β -decay studies of neutron rich ⁶¹⁻⁷⁰Mn isotopes with the new LISOL β -decay setup

J. Cederkall, P. Delahaye, J. Van de Walle PH department, ISOLDE, CERN, Switzerland V.N. Fedosseev, B. Marsh, AB department, CERN, Switzerland N. Bree, J. Diriken, O. Ivanov, M. Huyse, Y. Kudryavtsev, D. Pauwels, P. Van den Bergh, P. Van Duppen IKS, KU Leuven, Belgium S. Franchoo, IPN Orsay, France G. Georgiev, CSNSM, IN2P3-CNRS, Orsay, France O. Sorlin, GANIL, Caen, France U. Koster, ILL, Grenoble, France W.B. Walters, University of Maryland, USA β -decay studies of neutron rich ⁶¹⁻⁷⁰Mn isotopes with the new LISOL β -decay setup

- **1. General Physics Motivation**
- 2. Previous and proposed experiment
- 3. The LISOL β -decay setup
- 4. Contamination and Yields
- **5.** Conclusions

 β -decay studies of neutron rich ⁶¹⁻⁷⁰Mn isotopes with the new LISOL β -decay setup

1. General Physics Motivation

- 2. Previous and proposed experiment
- 3. The LISOL β -decay setup
- 4. Contamination and Yields
- **5.** Conclusions

1998 : $\beta\text{-decay}$ study at ISOLDE of $~^{64,66}\text{Mn}$

M. Hannawald, PhD dissertation Mainz universitat 1999

-Only Single γ 's in time slices of 150 ms after proton impact

-No β -gated γ -ray spectra

-Two coaxial Germanium detectors

-Only γ 's from ^{64,66}Mn were measured (experiment was an

"extended target test")

1998 : β-decay study at ISOLDE of ^{64,66}Mn M. Hannawald, PhD dissertation Mainz universitat 1999

-Only Single γ 's in time slices of 150 ms after proton impact -No β -gated γ -ray spectra -Two coaxial Germanium detectors

-Only $\gamma 's$ from $^{64,66}\text{Mn}$ were measured (experiment was an

"extended target test")

PROPOSAL 2008 : extended $\beta\text{-decay}$ study at ISOLDE of $\,^{61\text{--}70}\text{Mn}$

Singles AND β-gated γ-ray spectra
 NEW TECHNOLOGY :

•Two segmented MINIBALL cluster detectors

•Digital electronics : TOTAL DATA READOUT

•Use the unique Mn beams at ISOLDE again :

• one of the highest laser ionization efficiencies

• "standard" beam with UC_x target since 1998

Physics :

•Search for isomeric states ;

•Spin and parity assignments in ⁶¹⁻⁷⁰Fe;

•Probe deformation and shape co-existence in this region ;

1998 : β -decay study at ISOLDE of ^{64,66}Mn M. Hannawald, PhD dissertation Mainz universitat 1999

-Only Single γ 's in time slices of 150 ms after proton impact

-No β -gated γ -ray spectra

-Two coaxial Germanium detectors

-Only γ 's from ^{64,66}Mn were measured (experiment was an

"extended target test")

PROPOSAL 2008 : extended β -decay study at ISOLDE of ⁶¹⁻⁷⁰Mn

Singles AND β-gated γ-ray spectra NEW TECHNOLOGY :

•Two	segmented	MINIBALL	cluster	detectors
	0			

•Digital electronics : TOTAL DATA READOUT

•Use the unique Mn beams at ISOLDE again :

• one of the highest laser ionization efficiencies

• "standard" beam with UC_x target since 1998

Physics :

•Search for isomeric states ;

•Spin and parity assignments in ⁶¹⁻⁷⁰Fe;

•Probe deformation and shape co-existence in this region ;

= The new LISOL β -decay setup

 β -decay studies of neutron rich ⁶¹⁻⁷⁰Mn isotopes with the new LISOL β -decay setup

- **1. General Physics Motivation**
- 2. Previous and proposed experiment
- 3. The LISOL β -decay setup
- 4. Contamination and Yields
- **5.** Conclusions

3 Plastic $\Delta E \beta$ -detectors

6-fold segmented MINIBALL Clusters

✓ shielding

(polyethylene-borax-Cu-Lead) ✓ digital electronics readout \checkmark high segmentation (6 cores, 36 segments) reduces "true coincidence summing effects"

Efficiency Curves for the MINIBALL Cluster and 90% Coaxial Detector

6-fold segmented MINIBALL Clusters

3 Plastic $\Delta E \beta$ -detectors

✓ shielding

(polyethylene-borax-Cu-Lead)
✓ digital electronics readout
✓ high segmentation (6 cores,
36 segments) reduces "true
coincidence summing effects"

 $\Rightarrow \text{Coincidences and Correlations } (\gamma - \gamma, \beta \gamma - \gamma, ...) \text{ are}$ performed OFFLINE $\Rightarrow \text{TOTAL DATA READOUT}$

L. Weissman et al., PRC 59, 2004(1999).

L. Weissman et al., PRC 59, 2004(1999).

Conditions for applicability : -pure sources of radioactive ions -element selectivity -low background -efficient detection system -low count rate Conditions for applicability : -pure sources of radioactive ions -element selectivity ✓ low background ✓ efficient detection system -low count rate Conditions for applicability : -pure sources of radioactive ions ✓ element selectivity ✓ low background ✓ efficient detection system -low count rate

Laser ON and laser OFF measurements with RILIS

Conditions for applicability :

- ? pure sources of radioactive ions
- ✓ element selectivity
- ✓ low background
- ✓ efficient detection system
- ? low count rate

 β -decay studies of neutron rich ⁶¹⁻⁷⁰Mn isotopes with the new LISOL β -decay setup

- **1. General Physics Motivation**
- 2. Previous and proposed experiment
- 3. The LISOL β -decay setup
- 4. Contamination and Yields
- **5.** Conclusions

Ga production yields from fission cross section measurements of ²³⁸U with 1 GeV protons http://www-w2k.gsi.de/charms/data-arb04.htm or M. Bernas *et al.* Nucl. Phys. A 725 213 (2003) + 1% ionization efficiency Mn yields from ISOLDE Yield database

1,E+00

Α

Release Curves : C(1-e^{-t/ τ r</sub>).[α e^{-t/ τ f}+(1- α)e^{-t/ τ s}].e^{-t/ τ} T=2000°C}

Parameters taken from U. Koester, These 1999, TU Munchen + additional life time factor

1/ Half Lives differ orders of magnitude ;2/ Different release times (macro gating) ;

1/ Half Lives differ orders of magnitude ;
2/ Different release times (macro gating) ;
3/ Micro gating of laser ionized isotopes ;

1/ Half Lives differ orders of magnitude ;
2/ Different release times (macro gating) ;
3/ Micro gating of laser ionized isotopes ;
4/ Tape transport after each measuring cycle ;

Conditions for applicability :

- ✓ pure sources of radioactive ions
- ✓ element selectivity
- ✓ low background
- ✓ efficient detection system
- ✓ low count rate

1/ Half Lives differ orders of magnitude ;
2/ Different release times (macro gating) ;
3/ Micro gating of laser ionized isotopes ;
4/ Tape transport after each measuring cycle ;
5/ Good beam steering

CONCLUSION

ISOLDE provides the UNIQUE possibility to combine

1/ the new technology utilized with the LISOL β -decay setup 2/ the laser ionized neutron rich Mn beams at ISOLDE

1/ search for isomeric states in Iron and Manganese isotopes ;2/ complement the knowledge of the nuclear structure below (neutron rich) Nickel isotopes (Co, Fe and Mn)

Nr of Shifts

Example ⁶⁷Fe LISOL

1.25 ions/s on tape 58h (or 7 shifts) measurement

Nr of Shifts

Example ⁶⁷Fe LISOL

1.25 ions/s on tape 58h (or 7 shifts) measurement

Similar for ^{68,69}Mn : 7 shifts / isotope (6 laser on, 1 laser off) ⁶¹⁻⁶⁷Mn : average 1 shift / isotope ⁷⁰Mn : 2 shifts

24 SHIFTS

Lunardi et al. PRC 76 034303 (2007) M2 654 keV $9/2^+ \rightarrow 5/2^-$: 239(5) ns

1st forbidden GT transition $5/2^{-} \rightarrow 9/2^{-+}$

Lunardi et al. PRC 76 034303 (2007) M2 654 keV 9/2⁺→5/2⁻: 239(5) ns

Lunardi et al. PRC 76 034303 (2007)

(17/2+) 2990 ⁶¹Fe 1341 (13/2+) 1649 788 (7/2-) 959 9/2+ 861 0.25 µs 654 752 5/2-207 207 3/2-0

1st forbidden GT transition $5/2^{-} \rightarrow 9/2^{-+}$

(17/2+)

 $(13/2^+)$

9/2+

1341

788

2990

1649

861

207

0.25 µs

959

654

0

⁶¹Fe

(7/2-)

752 5/2-

207 3/2-

Lunardi et al. PRC 76 034303 (2007) M2 654 keV 9/2⁺→5/2⁻ : 239(5) ns

 $9/2^+ \rightarrow 5/2^- = \mu s$ isomer ... lost in prompt β - γ coincidences, re-gained with the digital readout !

Lunardi et al. PRC 76 034303 (2007) M2 654 keV 9/2⁺→5/2⁻ : 239(5) ns

⁶⁴Mn decay :

33(2)% β -delayed neutron branch \Rightarrow Feeding of low-spin states in ⁶³Mn !!!

L. Gaudefroy, These Orsay 2005

+ MSU mass measurements : isomer around 400 keV Block *et al.* (MSU)

+ LISOL β -decay ⁶⁵Fe Indication for β -decaying isomer D. Pauwels *et al.* (KU Leuven)

 $(3/2^{-})_{\frac{3}{2}} \circ 411(32) \text{ ms}$ [1] ${}^{67}_{26}\text{Fe}_{41} \beta$

 $(3/2^{-})_{\frac{3}{2}}$ 411(32) ms [1] ${}^{67}_{26}Fe_{41}$ β^{-}

In-flight separation and isomeric decay study at GANIL M. Sawicka et al. EPJA 16 51-54 (2003) [2]

In-flight separation and isomeric decay study at GANIL M. Sawicka et al. EPJA 16 51-54 (2003) [2]

[3] = β -decay study of ⁶⁷Mn at GANIL J.M. Daugas et al., AIP Conf Proc 831 p 427 No spin assignments (!)

Preliminary interpretation, related to shape coexistence and deformation D. Pauwels et al., These KU Leuven 2008 (to be published) [1]

(**) β-decay study ⁶⁸Mn at GANIL (2006) J.M. Daugas et al., AIP Conf Proc 831 p 427-429 (*) β-decay study ^{64,66}Mn at ISOLDE (1998) 2 Hannawald et al. PRL 82 1391 (1999) K

-28	Ni 61 1.1399	Ni 62 3.6345	Ni 63 100 a	Ni 64 0.9256	Ni 65 2.52 h	Ni 66 54.6 h	Ni 67 21 s	Ni 68 29 s	Ni 69 11.4 s	Ni 70 6.0 s	Ni 71 2.56 s	Ni 72 1.57 s
-20	σ 2.5 σ _{n, α} 0.00003	er 15	β 0.07 no γ σ 20	or 1.6	ρ 2.1 γ 1482; 1115; 366 σ 22	β ⁼ 0.2 no γ	β ⁼ 3.8 γ(1937; 1115; 822)	β γ 758; 84 9	β γ 1871; 680; 1213; 1483	β ⁼ 3.3 γ 1036; 78 m ₂	β γ534; 2016	β γ 376; 94
	CO 60	Co 61 1.65 h	CO 62	Co 63 27.5 s	Co 64 0.3 s	Co 65 1.14 s	Co 66 0.18 s	Co 67 425 ms	CO 68 1.6 s 0.23 s	Co 69 227 ms	Co 70 0.50 s 119 ms	Co 71 79 ms
	φ ⁻ 1.5 φ ⁻ γ 1332; γ (1332) 1173	β= 1.2	$\begin{array}{ccccccc} \beta^{+} 2.9 & \beta^{+} 4.1 \\ \gamma 1173; & \gamma 1173; \\ 1163; & 2302; \end{array}$	β= 3.6	β 7.0	β 6.0 χ 1142; 311;	β 7.2; 8.5 γ 1426; 1246;	β- 8.0	β γ 2033; 475; γ 2033;	β-	β ⁺ γ 1260: β ⁺ 608: γ 1260; 1868. 970.	β ⁻ γ 566; 774; 253; 281 βn
)	Fe 59 44.503 d	Fe 60 1.5 · 10 ⁶ a	Fe 61 6.0 m	Fe 62 68 s	Fe 63 6.1 s	Fe 64 2.0 s	Fe 65 0.45 s	Fe 66 0.44 s	Fe 67 0.47 s	Fe 68 0.1 s	Fe 69 0.17 s	Fe 70 94 ms
26	β ⁼ 0.5; 1.6 γ 1099; 1292 σ 13	β 0.1 m	β 2.6; 2.8 γ 1205; 1027; 298	β 2.5 γ 506 9	β 6.7 γ 995; 1427; 1299	β ⁻ γ311	β-	β-	8-	β-	β-	β-
	Mn 58 65.3 s 3.0 s	Mn 59 4.6 s	Mn 60	Mn 61 0.71 s	Mn 62 92 ms 625 ms	Mn 63 0.25 s	Mn 64 83.8 ms	Mn 65 92 ms	Mn 66 644 ms	Mn 67 45 ms	Mn 68 28 ms	Mn 69 14 ms
	β ⁻ 3.9 γ811, β ⁻ 6.1 1323 γ 1447; γ 72; e ⁻ 2433	β 4.4; 4.8 γ 726; 473; 571	6.1β 8.2 γ 823; γ 623; 1969 1150; λγ 272 1532	β 6.4 γ 629; 207	β ⁻ γ 877; 942; γ 815 1299	β > 3.7 γ 356	β βn γ 746	β- γ 366 βn	β γ 573 βn	β ⁻ βn	β" βn	β βn
24	Cr 57 21.1 s	Cr 58 7.0 s	Cr 59 1.05 s	Cr 60 0.49 s	Cr 61 0.27 s	Cr 62 209 ms	Cr 63 129 ms	Cr 64 43 ms	Cr 65 27 ms	Cr 66 10 ms	Cr 67 >300 ns	2.60E-7
24	β 5.1 γ83; 850; 1752; 1535	β γ 683; 126; 290; 520 m	β γ 1238; 1900; 112; 663	$\substack{\beta^{=} \ 6.7 \\ \gamma \ 349; \ 410; \ 758 \\ g}$	β	β ⁻ γ 285; 355; 640 m	β^- $\gamma 250 - 3454$	β- γ 188	β γ 272; 1368 βn ?	β-	β ?	3.51E-6
			35					40			43	
			35					40			43	

35

 \Rightarrow Coincidences and Correlations (γ - γ , $\beta\gamma$ - γ , ...) are performed OFFLINE

1- Event type definition : β - γ / single γ / ... + time window definition (T)

 \Rightarrow Coincidences and Correlations (γ - γ , $\beta\gamma$ - γ , ...) are performed OFFLINE

1- Event type definition : β - γ / single γ / ... + time window definition (T)

(scan over full data set for these event types)

 \Rightarrow Coincidences and Correlations (γ - γ , $\beta\gamma$ - γ , ...) are performed OFFLINE

1- Event type definition : β - γ / single γ / ... + time window definition (T) 2- Single γ -ray histograms in time slices (N x 25ns) before and after the detected "event type" = CORRELATED HISTOGRAMS

 \Rightarrow Coincidences and Correlations (γ - γ , $\beta\gamma$ - γ , ...) are performed OFFLINE

1- Event type definition : β - γ / single γ / ...

2- Single γ -ray histograms in time slices (N x 25ns) before and after

the detected "event type" = CORRELATED HISTOGRAMS

- 3- Single γ -ray histograms in the same time windows relative to the start of each cycle
- = RANDOMLY CORRELATED HISTOGRAMS

4. Contamination and Yields

2. Conditions for applicability : ? pure sources of radioactive ions ✓ element selectivity ✓ low background ✓ efficient detection system ? low count rate

4. Contamination and Yields

2. Conditions for applicability : ? pure sources of radioactive ions ✓ element selectivity ✓ low background ✓ efficient detection system ? low count rate

Pictures taken from U. Koester, These 1999, TU Munchen Method is exemplified for 67Co isotopes

1998 : β -decay study at ISOLDE of ^{64,66}Mn

M. Hannawald, PhD dissertation Mainz universitat 1999

-Only Single γ 's in time slices of 150 ms after proton impact

-No β -gated γ -ray spectra

-Two coaxial Germanium detectors

-Only γ 's from ^{64,66}Mn were measured (experiment was an

"extended target test")

