IPN Orsay, IKS Leuven, University of Manchester, New York University and University of Birmingham

Collinear resonant ionization laser spectroscopy of rare francium isotopes

The first dedicated ISCOOL experiment

- This proposal aims at pushing the limits of laser spectroscopy sensitivity.
- To measure for the first time cases with yields of only 1 atom per second.
- ISCOOL is essential to realize this project, by providing bunched ions beams.

Outline of proposal

- New innovation in laser spectroscopy.
- Ultra-high sensitivity and efficiency combined with high resolution.
- New semi permanent beam-line.
- New pulsed laser laboratory.
- New versatile method of producing clean beams for decay spectroscopy.
- Capability to study single atom yields even with large isobaric contamination

Physics Motivation: Francium

- Initial case which forms part of larger study of this region of the nuclear chart.
- Deformed (oblate) intruder π(s_{1/2}) state believed to be ground state of ¹⁹⁹Fr, and isomeric state in ^{201,203}Fr.
- ^{218,219}Fr border of region of reflection asymmetry, yielding important information on the transition from spherical to octupolequadrupole deformed nuclear structure.

Intruder levels and large deformation in neutron deficient francium

Systematic reduction in energy of the Deformed $\pi(1/2+)$ in isotopes in This region of the chart

 $\pi(1/2+)$ proton intruder state becomes the ground state in 195At and 185Bi

The isomer shifts of ^{201,203}Fr And their magnetic moments will provide important information to better understand the evolution of nuclear structure in this region.

Boarder of the region of reflection asymmetry

- Region characterised by reversal in odd-even staggering, which is attributed to presence of octupole-quadrupole deformation.
- Also characterised in the interleaving alternating band structure connected by enhance E1 transitions

Previous and proposed isotopes

Beyond francium

- Surrounding isotones Ra and Rn to complete the description of the π(1/2)⁺ level and border of region of reflection asymmetry.
- Bi isotope chain out to ²¹⁸Bi (yield of 10³) and possibly even further from N=126.
- Quadrupole moments and spin assignment in neutron deficient Po, Bi and Pb isotopes. Providing a full description of the shape evolution in this region.

Shape transitions beyond N=126

Nuclear Information from laser spectroscopy

- Coupling of nuclear and atomic total angular momentum vectors giving rise to a hyperfine splitting of the atomic transitions.
- It is possible to extract nuclear observables from these measurements without introducing nuclear model dependence.
- Unambiguous assignment of the nuclear spin, nuclear moments and changes in charge radius across an isotope chain.
- High resolution laser spectroscopy techniques are required to resolve the full structure.

CRIS beam line and method

Collinear resonant ionization laser spectroscopy (CRIS)

- RIS performed on a fast atomic bunched beam.
- Pulsed Amplified CW laser has a resolution which is Fourier limited to π/t (dye).
- Background events are due to non-resonant collisonal ionization, which is directly related to the vacuum
- Very high total experimental efficiency
 - Neutralization 50-90%
 - Ionization efficiency 50-100% (no HFS)
 - Detection efficiency almost 100%
 - Transport through ISCOOL 70-80%
 - Transport to experiment 80-90%

1:30 From Jyvaskyla off-line tests (K. Flanagan, PhD)

Up to 50% efficiency possible

Previous CRIS of Yb at ISOLDE

Ch. Schulz *et al.*, J. Phys. B, **24** (1991) 4831

- Charge exchange efficiency into meta stable states
- Below saturation on second step
- CW beam and duty cycle losses due to lasers

Limiting factors:Efficiency and isobaric contamination

- From the ISCOOL tests in November a limit of 10⁸pps were trapped and measured on an MCP.
- Conservative efficiency of 1:30 (number from Jyvaskyla work) and a pressure of 10⁻⁹ mbar and a high isobaric contamination of 10⁷ (expect much lower).

Background suppression: Pressure 10⁻⁹ mbar = 1:200 000 Detection of secondary electrons by MCP

Alpha decay detection allows removal of all isobaric contamination (50-100cts/s)

Limited to > 100pps Limited >5pps

With 50% efficiency and signal limited noise regime = 0.3pps

This underlines the importance of improving beam purity for future HIE-ISOLDE and ISCOOL work

Logistical planning 2008-2009

- Finalize technical design and commence construction of beam line components March/April 2008
- Purchasing and shipping of equipment to CERN Summer 2008
- Installation of equipment winter shutdown 2008
- Initial off-line optimization March/April 2009

Break down of beam time request

Year	Run	lsotopes	Number of shifts	Preparation requirements
2009	1	206-203	11	1 shift for Tl/Fr optimization
2010	2	218,219	9	
2010	3	202,201	12	

Total of 33 shifts requested over 2 year period. Run 1. will work with ground state yields between 10⁷-10⁵pps

Thank you for your attention

Available resources

- Manchester: 2 Academics, 1 postdoc, 2 PhD students, 2 Technical staff.
- Leuven: 1 Academic, 2 postdocs, 2 PhD students.
- Orsay:2 Academic, 1 postdoc, 1 PhD student.
- Birmingham: 1 Academic, 1 postdoc, 2 PhD students.

Total of 20 people

Technical Drawings

Hyperfine interaction of the atom (ion)

- Coupling of the nuclear spin with electronic
- New quantum number F=I+J
- The nuclear electromagnetic moments break the degeneracy.
- Atomic (ionic) states are split into multiplets

Hyperfine Structure

F

Isotope Shift

Signal to noise: Limits of detection

- Signal Noise Ratio (SNR) > 5 for total confidence in laser spectroscopy.
- SNR =(S/√(S+B))*√t where S is the signal rate, B is the background rate and t is the time in seconds
- By eliminating the background the SNR reduces to √(S*t) which presents the ultimate limit on the time it takes to collect data.