High Resolution optical spectroscopy in isotopically-pure Si using radioactive isotopes: towards a re-evaluation of deep centres

Mike Thewalt¹, Karl Johnston^{2a}, Martin Henry³

¹Dept of Physics, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6 ²PH Dept, CERN, 1211 Geneva 23 ³School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland ^aSpokesperson and Contact Person at ISOLDE

Motivation for studying defects in semiconductors

>Optical characterization of materials

Avogadro project

Optical Spectroscopy in isotopically pure Si: new information on old systems

 \succ What we want to look at here (¹⁹⁵Au)

Quick Demonstration of the effect of impurities in materials I: Al₂O₃:Cr

Quick Demonstration of the effect of impurities in materials II: Al_2O_3 :Fe

Defects in semiconductors

> Control of impurities in materials such as semiconductors important, nay vital.

Recently much of the focus has been on compound semiconductors such as ZnO etc because of their relevance for optoelectronics and new areas such as spintronics.

➢ Si, although the pre-eminent semiconductor material, shouldn't be regarded as a closed book.

> Experiments using isotopically-pure material are casting new light on old results.

➢ For the purposes of this proposal the experimental method used will be photoluminescence (PL)

PL Characterisation of Semiconductors

PL Characterisation of Semiconductors

Typical PL apparatus

Typical PL apparatus

Example of typical PL spectrum from Si

Taken from Davies Physics Reports 176 3&4(1989)

Interlude I: Avogadro project

Physical units are now defined in terms of measurable quantities rather than the artifacts of yore.

The remaining exception to this is the kilogram, which is still defined in terms of a Pt-Ir cylinder in Paris.

Now however, there is a project which aims to re-define the kg in terms of the number of atoms of Si in a sphere: the Avogadro project. Desired accuracy $4\mu g!!!!$

Avogadro Project: define kg in terms of number of Si atoms

Count the number of atoms using the X-ray crystal density molar mass method (XRCDMM).

Use a sphere of mono-isotope Si (²⁸Si)

$$N_{\rm A} = \frac{V_{\rm mol}}{V_{\rm o}}.$$
$$N_{\rm A} = \frac{V_{\rm mol}}{(a^3/n)},$$
$$N_{\rm A} = \frac{M_{\rm Si}}{m} \frac{V}{(a^3/8)}.$$

Unexpected by-product of this is being able to study the pure mono-isotope Si using normal optical techniques and see if there are any differences between it and natural material: there are!!!!!!!!

First thing that is striking about the pure material is the sharpness of the optical features

Si normally found in the ratio: ²⁸Si: ²⁹Si : ³⁰Si (92.23 : 4.68 : 3.09)

The pure material has optical features which can't be resolved even with a state of the art Fourier transform spectrometer (**0.014cm**⁻¹).

Bound excitons involving P and B sharpen up considerably.

Also get information on the indirect band gap etc, but the real surprise was sharpness of optical features.

Photoluminescence of Isotopically Purified Silicon: How Sharp are Bound Exciton Transitions?

D. Karaiskaj and M. L. W. Thewalt Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 156

> T. Ruf and M. Cardona Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany

> > H.-J. Pohl VITCON Projectconsult GmbH, 07745 Jena, Germany

G. G. Deviatych and P. G. Sennikov Institute of Chemistry of Highly Pure Substances, RAS, 603600 Nizhny Novgorod, Russia

Karaiskaj *et al* PRL **86** (26) 2001

This sharpness allows one to see isotopic effects in much more detail than before, and from this, obtain new data.

► Again, similar behaviour for Se, a donor in Si.

>Enables fine structure to be obtained, split in accordance to the natural distribution of Se in nature.

≻Also, when utilizing the nuclear spin of ⁷⁷Se, get hyperfine splitting in the ground state.

➢Possible applications in quantum computing?

Thewalt et al Physica B 401-402 587(2007)

Cu in Si: an old problem

Cu is a VERY fast diffuser in Si. At 900C the diffusion coefficient is more than 7 orders of magnitude greater than O_2 .

➤As such, it has been a bane on the processing of Si since the 50s; it is nearly always present to some degree.

>Cu leads to an optical feature at **1014meV**. Triply-degenerate ground state (Γ 4); doubly-degenerate excited state (Γ 3).

➢In addition, there is a vibronic sideband with quanta of 7, 16.4 and 25.1 meV which results in a relatively complex spectrum.

The structure of this band has been the subject of quite a bit of work and two competing models are favoured: Cu pair (Cu_s-Cu_i) or a single substitutional Cu centre.

Cu in Si: Typical PL spectrum

Interlude II: Cu isotopes

As the lines are so sharp, we can play some games in this pure Si

31	63Ga 32.4 S €: 100.00%	64Ga 2.627 M € 100.00%	65Ga 15.2 M € 100.00%	66Ga 9.49 H € 100.00%	67Ga 3.2617 D € 100.00%	68Ga 67.71 M € 100.00%	69 Ga STABLE 60.108%	70Ga 21.14 M β-: 99.59% ε: 0.41%	71Ga STABLE 39.892%
	62Zn 9.186 H € 100.00%	63Zn 38.47 Μ ε: 100.00%	64Zn STABLE 48.63%	65Zn 243.66 D € 100.00%	66Zn STABLE 27.90%	67Zn STABLE 4.10%	68Zn STABLE 18.75%	69Zn 56.4 M β-: 100.00%	70Zn >1.3E+16 Υ 0.62% 2β-
29	61Cu 3.333 H & 100.00%	62Cu 9.67 M € 100.00%	63Cu STABLE 69.17%	64Cu 12.701 H ε: 61.50% β-: 38.50%	65Cu STABLE 30.83%	66Cu 5.120 Μ β-: 100.00%	67Cu 61.83H β-: 100.00%	68Cu 31.1 S β-: 100.00%	69Cu 2.85 Μ β-: 100.00%
	60Ni STABLE 26.223%	61Ni STABLE 1.140%	62Ni STABLE 3.634%	63Ni 100.1 Υ β-: 100.00%	64Ni STABLE 0.926%	65Ni 2.5172 H β-: 100.00%	66Ni 54.6 H β-: 100.00%	67Ni 21 S β-: 100.00%	68Ni 29 S β-: 100.00%
27	59Co STABLE 100%	60Co 1925.28 D β-: 100.00%	61Co 1.650 H β-: 100.00%	62Co 1.50 M β-: 100.00%	63Co 27.4 S β-: 100.00%	64Co 0.30 S β-: 100.00%	65Co 1.20 S β-: 100.00%	66Co 0.18 s β-: 100.00%	67Co 0.425 S β-: 100.00%
	32		34		36		38		40

Cu in ²⁸Si: features sharpen up incredibly.

Spectrum below is a mixture of diffusion and introducing enriched ⁶³Cu and ⁶⁵Cu.

Surprising results!!! Need to re-think our knowledge on deep-levels in Si

The complexity of the results shown can *not* be explained by the previous model of only 2 Cu atoms

Need to invoke *at least* 4 Cu atoms to explain these data, based on the isotopic breakdown etc

These data are new: Exact model still unknown (for that perturbation techniques would be required)

However, it is apparent that metal impurities in Si are perhaps less understood than previously thought.

Look now at Ag and Au

Ag in Si:

Optical feature previously thought to involve *only* Cu is shown to contain Ag also.

In particular 2 Cu atoms and 2 Ag ; 3 Cu and 1 Ag. (additional signal due to 4 Ag atoms).

What's the big deal???

These impurities are produced even at low temperatures:

Surprising that complex "families" of impurities can "organize" themselves in this way.

Consequences for future applications of semiconductors: spintronics etc.

(Thewalt submitted to PRL (2008))

Where we'd like ISOLDE to help:

Au is probably the most-studied metallic defect in Si.

A centre previously thought to be due to Fe is revealed to originate from Cu and Au.

Preliminary data suggest that centre is also multi-atom i.e. Cu_3Au , but other possibilities of Au_n are hard to check: why?

Have **Cu₄; Cu₃Ag₁; Ag₄, Cu₃Au; Au₄**???????

(Thewalt submitted to PRL (2008))

Problem: only one stable isotope of Au, but ¹⁹⁵Au can be obtained at ISOLDE

81	195Tl	196Tl	197Tl	198Tl	199TI	200Tl	201Tl	202Tl	203TI
	1.16 H	1.84 H	2.84 H	5.3 H	7.42 H	26.1 H	3.0421 D	12.23 D	STABLE
	€ 100.00%	€ 100.00%	€ 100.00%	€ 100.00%	€ 100.00%	€ 100.00%	€ 100.00%	6: 100.00%	29.524%
	194Hg	195Hg	196Hg	197Hg	198Hg	199Hg	200Hg	201Hg	202Hg
	444 Ү	10.53 H	STABLE	64.14 H	STABLE	STABLE	STABLE	STABLE	STABLE
	є: 100.00%	€: 100.00%	0.15%	€: 100.00%	9.97%	16.87%	23.10%	13.18%	29.86%
79	193Au 17.65 H 6: 100.00%	194Au 38.02 H € 100.00%	195Au 186.098 D € 100.00%	196Au 6.1669 D ε: 93.00% β-: 7.00%	197Au STABLE 100%	198Au 2.6956 D β-: 100.00%	199Au 3.139 D β-: 100.00%	200Au 48.4 M β-: 100.00%	201Au 26.0 M β-: 100.00%
	192Pt	193Pt	194Pt	195Pt	196Pt	197Pt	198Pt	199Pt	200Pt
	STABLE	50 Y	STABLE	STABLE	STABLE	19.8915 H	STABLE	30.80 M	12.6 H
	0.782%	€: 100.00%	32.967%	33.832%	25.242%	β-: 100.00%	7.163%	β-: 100.00%	β-: 100.00%
77	191Ir STABLE 37.3%	192Ir 73.827 D β-: 95.13% ε: 4.87%	193Ir STABLE 62.7%	194Ir 19.28 H β-: 100.00%	195Ir 2.5 H β-: 100.00%	196Ir 52 S β-: 100.00%	197Ir 5.8 M β-: 100.00%	198Ir 8 S β-: 100.00%	199Ir β-
	114		116		118		120		122

Request for this proposal

6 shifts of ¹⁹⁵Hg \rightarrow ¹⁹⁵Au.

Obtainable through 2 means (as below). Half-life is ~ 186d enables us to do spectroscopy on the isotope as if it were stable. (also radioactive double-check).

Allows several samples to be made, with varying concentrations of ¹⁹⁵Au and ¹⁹⁷Au.

Samples will then be shipped to Canada for the PL measurements.

Possibility of new data on variety of isotopes in semiconductors may be offered: will require optimizing of the PL system at ISOLDE.

Isotope	Half-life	Implantation energy (keV)	Target	Ion Source
195Hg →195Au→ 195Pt	40h/186d	60 (or less)	Molten Pb	Plasma
195Pb→ 195Ti → 195Hg	15m /	60 (or less)	UCx	RILIS
\rightarrow 195Au \rightarrow 195Pt	186d			

Unique opportunity to probe this new "class: of impurities in Si.