Measurements of shape co-existence in ^{182,184}Hg using Coulomb excitation

Addendum to proposal IS452

- **CERN-ISOLDE** (J. Cederkäll, P. Delahaye, D. Voulot, L.Fraile, F.Wenander, J. Van de Walle)
- **CCLRC Daresbury** Laboratory (B. Gomez, J. Simpson)
- University of Edinburgh (T. Davinson, P. Woods)
- University of Göttingen (K.-P. Lieb)
- University of Jyväskylä (P.T. Greenlees, P. Jones, R. Julin, S. Juutinen)
- *KU Leuven* (N. Bree, A. Andreyev, B. Bastin, J. Diriken, N. Patronis, M Huyse, O. Ivanov and P. Van Duppen)
- *University of Liverpool* (P.A. Butler, T. Grahn, R.-D. Herzberg, D.T. Joss, R.D. Page, E.S. Paul, J. Pakarinen, A. Petts, M. Scheck)
- University of Lund (A. Ekstrom, C. Fahlander)
- **TU-München** (T. Behrens, V. Bildstein, T. Fästermann, R. Gernhäuser, Th. Kröll, R. Krücken, M. Mahgoub, P. Maierbeck, K. Wimmer)
- University of Oslo (M. Guttormsen, A.-C. Larsen, S. Siem, N. U. H. Syed)
- CEA-Saclay (E. Clement, C. Dossat, A. Goergen, W. Korten, J. Ljungvall, Ch. Theisen, M. Zielinska)
- University of Sofia (G. Rainovski)
- HIL University of Warsaw (T. Czosnyka, J. Iwanicki, P. Napiorkowski, J. Srebrny, K. Wrzosek)

University of York (D.G. Jenkins, B.S Nara Singh, N.S. Pattabiraman, R. Wadsworth) Argonne National Laboratory (R.V.F. Janssens, M. Carpenter, F. Kondev) University of Maryland (I. Stefanescu)

Measurements of shape co-existence in ^{182,184}Hg using Coulomb excitation

Addendum to proposal IS452

- Physics motivation (cfr. IS452 proposal)
- ^{180,182}Hg Coulomb excitation
- Preliminary results from the August 2007 experiment
- Beam time request

Shape coexistence in the neutron-deficient Hg isotopes

Ulm et al. Z. Phys. A 325(1986)247

Energy systematics of the neutron-deficient Hg isotopes

^{180 - 184}Hg: oblate – prolate shape coexistence / mixing

K.U. Leuven

K.U. Leuven

• calculated energies and B(E2) values can be directly compared to calculations

• Coulex will preferentially excite states strongly coupled to the ground state so the oblate or prolate excited states will be readily observed and identified

• Low energy Coulex will measure the sign of the diagonal quadrupole matrix element and hence distinguish between prolate and oblate excitation provided half-life data are available; ^{180,182}Hg τ (2⁺) have been measured at JYFL (Hurst et al, PRL98 072501 (2007))

• The **degree of mixing** between the oblate and prolate structures is determined directly from the transition matrix elements.

Coulomb excitation of ^{184,186,188}Hg at REX-ISOLDE & MINIBALL August 2007 experiment

• Technical problems:

Total REX-transmission efficiency: ~ 0.2 % (mainly due to incorrect scaling, not due to trapping/charge-breeding efficiency)
Primary production for ¹⁸²Hg: lower compared to yield book values

(no data taken on ¹⁸²Hg)

Isotope	Charge state	Intensity@Miniball 2.85 MeV/u	Data collection time
¹⁸⁴ Hg	43+	3 x 10 ³ pps	77h02m
¹⁸⁶ Hg	43+	2 x 10 ⁵ pps	5h34m
¹⁸⁸ Hg	44+	2.5 x 10 ⁵ pps	12h56m

Coulomb excitation of ^{184,186,188}Hg at REX-ISOLDE & MINIBALL

Coulomb excitation of ^{184,186,188}Hg at REX-ISOLDE & MINIBALL

- Part of the data obtained on ¹⁸⁴Hg
- Data obtained for ^{186,188}Hg as well
- Coulomb excitation at REX-ISOLDE & MINIBALL for heavy mass isotopes is feasible

transition	transition energy (keV)	matrix element trans./diag. (eb)	γ -ray yields
2 ⁺ ₁ -0 ⁺ ₁ oblate	352	-1.32/1.57	57800
2 ⁺ ₁ -0 ⁺ ₁ prolate	352	1.32/-1.57	45800
4 ⁺ ₂ -2 ⁺ ₁ oblate	578	-2.13/2.02	1360
2 ⁺ ₂ -0 ⁺ ₁ prolate	549	0.13/-1.57	200

100 hours of 5 x 10⁴ ions/s at 2.75 MeV/u on a 1 mg/cm² ¹²⁰Sn target

¹⁸²Hg

¹⁸⁰Hg

	¹⁸² Hg	¹⁸⁰ Hg
ISOLDE production rate (molten Pb target / plasma ion source)	7.9 10 ⁶ pps	5.3 10 ⁴ pps
Beam intensity @ MINIBALL (total REX eff. = 2%) Maximum available energy (3 MeV/u)	> 10⁵ pps	> 10 ³ pps
Beam time request (data taking)	12 shifts	9 shifts
Beam time request (setting up REX)	3 shifts	
Total beam time request	24 shifts = 13 (new) + 11 (remaining)	

Coulomb excitation of ^{184,186,188}Hg at REX-ISOLDE & MINIBALL

Coulomb excitation and the sign of the diagonal quadrupole matrix element

The cross section for exciting ¹⁸⁴Hg to its 2⁺ state does not only depend on its reduced transition probability B(E2: 0⁺ -> 2⁺), but also on the diagonal matrix element $<2^{+}||M(E2)||2^{+}>$.

Reorientation effect

$$P_{2+}$$
 ∝ <0||E2||2+>². [1 - <2+||E2'||2+> f(ξ)]
where ξ ~ ΔE/(E_{beam})^{3/2}

Results: ⁷⁰**Se**

