Addendum to IS 449

Measurement of the isotope shift of ^{7,9,10,11}Be at COLLAPS

The BeTINa Collaboration

W. Nörtershäuser^{1,2}, K. Blaum^{1,2}, J. Ebele⁴, Ch. Geppert², M. Kowalska³, J. Krämer¹, R. Neugart¹, R. Sanchez¹, F. Schmidt-Kaler⁴, D. Tiedemann¹, D. Yordanov³, M. Zakova¹, C. Zimmermann⁵

¹ Johannes Gutenberg-Universität Mainz, Germany
 ² GSI Darmstadt, Germany
 ³ CERN, CH-1211 Genéve 23, Switzerland
 ⁴ Universität Ulm, Germany
 ⁵ Eberhard-Karls Universität Tübingen, Germany

Spokespersons: W. Nörtershäuser, C. Geppert **Local Contacts:** D. Yordanov, M. Kowalska

Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz Young Investigators Group)

1

http://www.kernchemie.uni-mainz.de/laser

GSİ

Radii of Halo Isotopes

Charge radius measurements of light (Z<18) radioactive isotopes:

2003 : ^{6,7,8,9}Li at GSI G.Ewald et al., PRL 93, 113002 (200<mark>4</mark>)

2004: ⁶He at Argonne, L.-B. Wang et al. PRL 93, 142501 (2004)

2004: ¹¹Li at TRIUMF, R. Sanchez et al., PRL 96, 033002 (2006

2007: ⁸He at GANIL, P. Müller et al. PRL 99, 252501 (2007)

Isotope Shift

Charge Radii Determination for Light Elements

Level Scheme and Be⁺ Transitions

Simulated Spectra

- Standard collinear measurements are limited by the uncertainty of the acceleration voltage
 Use "simultaneous" collinear-anticollinear measurement and absolute frequency determination with a frequency comb
- Field shift is too small in light isotopes
 FS constant in Be⁺ 2s-2p is considerably larger than in lithium 2s-2p or 2s-3s since the electron is stronger bound
- ⇒ Charge radii can be measured to a good accuracy with COLLAPS if we apply "new" techniques !

Approach

Laser System for Beryllium Spectroscopy

ELMHOLTZ

9

Laser

SpHERe

lodine Lines for the ${}^{9}\text{Be}^{+} 2s_{1/2} \rightarrow 2p_{1/2}$ transition (cg)

HELMHOLTZ

GUTENBERG

Laser

SpHERe

Be Hyperfine Measurements at COLLAPS

+ Mass shift calculations by G.W.F. Drake and Z.-C. Yan / K. Pachucki:

 \rightarrow Exakt position of Be Resonances within a few MHz

Reachable Accuracy

Absolute frequency determination								
Line center accuracy	1 MHz							
1 mrad Laser – Ion Beam Angle	0.005 MHz							
1 mrad Missalignment of laser beams	0.75 MHz							
Clock-related comb uncertainty	<0.10 MHz							
Total Uncertainty	< 2 MHz							
IS determination (differential effects)								
Line center accuracy	<1 MHz							
1 mrad Laser – Ion Beam Angle	0.005 MHz							
1 mrad Missalignment of laser beams	0.075 MHz							
Total Uncertainty	~ 1 MHz							

Beamtime Request and Schedule

- Test Beamtime in April / May (8 shifts)
- On-line Run in June / July (16 shifts)

Summary :

A nuclear charge radius determination of 7,9,10 Be and the 1-Neutron Halo Nucleus 11 Be with an accuracy of better than 5% R_c is feasible by frequency-comb based collinear laser spectroscopy at COLLAPS.

rabelle (i.i.) Hoomare Hommadon der vier für Berrita feletanden Berjinamisotope								
[Ι	Masse $/10^{-6} \cdot u$		$\mu_{ m I}/\mu_{ m N}$	Lebensdauer	
[⁷ B	Be	$\frac{3}{2}$	7.016.929,83(11)[Aud03	3]	1,398(15)[Kap99]	53,3 d	
[⁹ B	ße	$\frac{3}{2}$	9.012.182, 2(4)[Aud03]		1,7749(2)[Sto05]	stabil	
[¹⁰ B	ße	0	10.013.533, 8(4)[Aud03]		0	$1,5 \cdot 10^{6} a$	
[^{11}B	Be	$\frac{1}{2}$	11.021.658(7)[Aud03]		1,6814(13)[Kap99]	$13,8\mathrm{s}$	
	$A(2S_{1/2})$ /MHz		A	$(2P_{1/2})$ /MHz	$\sqrt{\langle r_l^2 angle/{ m fm}}$			
-7	$^{7}\text{Be} = -743,36(1,64)[\text{Neu}07]$		_	-139,91(64)[Neu07]				
9	Be	Be = -625,008837048(10)[Win83]		_	-118,6(3,6)[Bol85]	2,519(12)[Jan72]		
11	Be	-	267	6,3(2,0)	_	-508(20)		

Tabelle 6.1.: Atomare Ker	nndaten der vier fi	ir BeTINa relevanten	Berylliumisotope
---------------------------	---------------------	----------------------	------------------

