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Steepest descent method and asymptotic series

Let S(x) be a real entire function and such that the integral

Z(g) =
1√
2πg

∫

dx e−S(x)/g,

converges for g > 0. We also assume that S(x) has a unique minimum at

x = 0 where S(x) = x2/2 + O(x3). For g → 0+, Z(g) can be evaluated by

the steepest descent method. Since the integral is dominated by the saddle

point x = 0, this involves expanding S(x) around x = 0. The integral is

then formally given by an expansion of the form

Z(g) ≈
∞
∑

k=0

Zkg
k.

Except for the Gaussian integral, the expansion cannot be convergent for

any g 6= 0 because for g < 0 the integral diverges. The function Z(g) thus

has a cut starting from g = 0.



C

Fig. 1 Cauchy contour Cε: one-cut example.

Large order behaviour and the steepest descent method

For |g| small enough, one can use the Cauchy representation (see figure)

Z(g) =
1

2iπ

∫

Cε

dg′
Z(g′)

g′ − g
.

One shows that, for g → 0, the discontinuity of Z(g) on cuts is dominated

by the contributions of other non-trivial (complex) saddle points.



One then finds

disc.Z(g) ∝
g→0

∑

leading saddle pointsxs

e−S(xs)/g .

Due to the exponential decrease of disc. Z(g) for g → 0, near g = 0 one

can replace the contour integral by the integral of disc. Z(g) on the cut and

expand the integral in powers of g. One infers

Zk =
1

2iπ

∫

C0

g−k−1Z(g)dg .

For k → ∞, the integral is dominated by small values of g.

Using the behaviour of disc. Z(g) for g → 0, one thus finds

Zk ∼
k→∞

1

2iπ

∫ 0

g−k−1disc.Z(g)dg

∝
∑

s

∫ 0

g−k−1 e−S(xs)/g dg ∝ k!
∑

s

S−k(xs) .



Path and field integrals

The arguments (and the generic k! behaviour) generalize at once to multiple

integrals, path and field integrals in the context of loopwise or semi-classical

expansions. The large order behaviour is then dominated by instantons,

finite action solutions (in general complex), of euclidean classical field equa-

tions. However, there are two restrictions:

(i) Field theories with fermions and no boson self-interactions diverge

with a smaller power of k! due to the Pauli principle.

(ii) In renormalizable field theories (by contrast with super-renormalizable)

additional contributions to the large order behaviour may be expected, gen-

erated by UV or, in massless theories, IR singularities.



Example: The φ4d<4 field theory

In a gφ4 field theory, correlation functions are analytic in a cut-plane. For

g → 0−, the saddle point solution φ(x) ≡ 0 of the field equation domi-

nates the real part while the non-trivial instanton solutions dominate the

imaginary part on the cut. The euclidean field equation reads

(−∆x +m2)φ(x) + gm4−dφ3(x)/6 = 0 .

The leading instanton solution has the general form

φ(x) =
1√−gm

(d−2)/2f(mr), r = |x|.

The leading contribution yields

Zk ∼
∫ 0

−∞

eA/g g−k−1dg ∝ k! (−A)−k ,

where −A is the instanton action. For d = 3, A = 113.38350781527714(1).



Asymptotic series and Borel summability

For simplicity, we consider only the relevant example of k! divergent series.

Let a function F (z) a function analytic in a sector

S = {0 < |z| ≤ ζ , |Arg z| ≤ α/2},
where it satisfies

|F (z)−
n−1
∑

k=0

Fkz
k| ≤Mn!

( |z|
A

)n

∀n > 0 .

By contrast with a convergent series, the formal (asymptotic) series

[F ](z) =
∑

k=0

Fkz
k ,

for z 6= 0 determines the function F only up to a finite error since the best

estimate is obtained for a finite value of n. Indeed,

minnM A−n|z|nn! ∝
|z|≪1

e−A/|z| .



The asymptotic series does not define, in general, a unique function, but

only a class of functions that differ by terms of order e−A/z.

However, for α > π, a theorem states that any analytic function bounded

by e−A/|z| vanishes. Then, the asymptotic series defines a unique func-

tion and is called Borel-summable. The function F can be recovered by

introducing the auxiliary function

BF (z) =
∑

k

Fk

k!
zk

The function BF (z) is analytic is the union of a circle |z| < A, where the

series converges, and a sector |Arg z| < α/2− π/2.

F is then the Borel–Laplace transform of BF :

F (z) =

∫ ∞

0

dt e−tBF (zt)dt .



Borel summation: application, the (φ2)2d<4 field theory

Number of interesting, continuous, phase transitions are described by the

N -vector model, an O(N) symmetric statistical field theory with an N -

component field φ(x). The partition function then reads

Z =

∫

[dφ(x)] exp [−H(φ)] ,

where the Hamiltonian (or euclidean action) is given by

H(φ) =

∫

{

1

2

∑

µ

[∂µφ(x)]
2
+

1

2
rφ2(x) +

u

4!

[

φ2(x)
]2

}

ddx .

The first values of N correspond to the transitions:

N = 1: liquid–vapour, binary mixtures, Ising-like ferromagnetic systems

N = 2: Helium superfluidity

N = 3: isotropic ferromagnetic systems

and N = 0 to statistical properties of long polymer chains or SAW.



Callan–Symanzik (CS) equations

Critical exponents can be derived from RG functions, calculated in the

massless field theory, using the Wilson–Fisher (divergent) ε = (4 − d)-

expansion. However, as suggested by Parisi, one can also work at fixed

dimension d < 4 in the massive theory (the critical domain), where, by

contrast with the massless theory, the perturbative expansion is IR finite.

Then, renormalized vertex functions can be defined by the renormalization

conditions

Γ̃(2)(p;m, g) = m2 + p2 +O(p4), Γ̃(4)(0, 0, 0, 0;m, g) = gm4−d.

Vertex functions satisfy the CS equations
[

m
∂

∂m
+ β(g)

∂

∂g
− n

2
η(g)

]

Γ̃(n)(pi;m, g) = m2(2− η)Γ̃
(n)
φ2 (pi;m, g),

where Γ
(n)
φ2 is a vertex function with one

∫

ddxφ2(x) insertion.



The fixed dimension scheme

RG functions are calculated directly in dimension 3 but, by contrast with

the ε = (4 − d)-expansion scheme, one no longer has a ‘small’ expansion

parameter. However, Nickel has noticed that Feynman diagrams in dimen-

sion 3 can be more easily evaluated than in ε = (4 − d)-dimensions. He

has managed to calculate all diagrams contributing to RG functions η, η2

(anomalous dimensions of φ and φ2) up to seven loops, and the diagrams

contributing to the β-function up to six loops.

For example, for N = 1, Nickel has obtained (g̃ = 3g/(16π))

β(g̃) = −g̃ + g̃2 − 308
729 g̃

3 + 0.3510695978g̃4

− 0.3765268283g̃5 + 0.49554751g̃6 − 0.749689g̃7 +O
(

g̃8
)

.

At large orders, the coefficient of g̃k then behaves like

βk ∝
k→∞

(−a)kkbk! , a = 0.147774232 . . . , b = 11/2 .



The numerical determination of the zero of the β-function, which is a num-

ber of order 1, as well as the calculation of exponents, clearly requires a

summation of the series.

In three dimensions, the perturbative expansion is proved to be Borel

summable. It is thus natural to introduce the Borel–Laplace transformation

(here, Borel–Leroy). For example, for the β-function one defines

Bβ(σ, g) =
∑

k

βk
Γ(k + σ + 1)

gk,

(σ is an adjustable parameter) where the function Bβ(σ, g) is analytic in a

circle of radius 1/a and a neighbourhood of the positive real axis. Then,

β(g) =

∫ +∞

0

tσ e−tBβ(σ, gt)dt .



The series defines the function Bβ only in a circle. It is necessary to perform

an analytic continuation, at least in the neighbourhood of the real positive

axis. In practice, with a small number of terms, a precise continuation

requires a domain of analyticity larger than what is proved. Le Guillou

and Z.-J. (1977–1980) have assumed maximal analyticity compatible with

existing knowledge, i.e., analyticity in a cut-plane. A conformal mapping

of the cut-plane onto a circle has then provided the required continuation.

Improved summation techniques and additional seven-loop contributions

have later led to improved estimates of critical exponents.

Reference: R. Guida and J. Zinn-Justin, J. Phys. A 31 (1998) 8103,

cond-mat/9803240, an improvement over the results first published in

J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39 (1977) 95; Phys.

Rev. B21 (1980) 3976.



Table 2

Series summed by the method based on Borel transformation and mapping for the
zero g̃∗ of the β(g) function and the exponents γ and ν in the φ4

3 field theory.

k 2 3 4 5 6 7

g̃∗ 1.8774 1.5135 1.4149 1.4107 1.4103 1.4105

ν 0.6338 0.6328 0.62966 0.6302 0.6302 0.6302

γ 1.2257 1.2370 1.2386 1.2398 1.2398 1.2398

The parameter-free results obtained by this method, based on first principle

field theory calculations, have survived more than 30 years of confronta-

tion with experimental results, as well as lattice calculations. However, the

progress in precision of the latter, as well as the superfluid experimental

results, should be an encouragement to try to evaluate additional terms of

the perturbative series.



Critical exponents from the O(N) symmetric (φ2)23 field theory

N 0 1 2 3

g̃∗ 1.413± 0.006 1.411± 0.004 1.403± 0.003 1.390± 0.004

g∗ 26.63± 0.11 23.64± 0.07 21.16± 0.05 19.06± 0.05

γ 1.1596± 0.0020 1.2396± 0.0013 1.3169± 0.0020 1.3895± 0.0050

ν 0.5882± 0.0011 0.6304± 0.0013 0.6703± 0.0015 0.7073± 0.0035

η 0.0284± 0.0025 0.0335± 0.0025 0.0354± 0.0025 0.0355± 0.0025

β 0.3024± 0.0008 0.3258± 0.0014 0.3470± 0.0016 0.3662± 0.0025

α 0.235± 0.003 0.109± 0.004 −0.011± 0.004 −0.122± 0.010

ω 0.812± 0.016 0.799± 0.011 0.789± 0.011 0.782± 0.0013

ων 0.478± 0.010 0.504± 0.008 0.529± 0.009 0.553± 0.012



A non-Borel summable example: the quartic double-well potential

While it is not always simple to prove Borel summability, by contrast, it is

often easier to verify non-Borel summability. For instance, if a real function,

analytic in a sector centred around the real positive axis, has an asymptotic

expansion where, asymptotically, all terms have the same sign, the series

cannot be Borel summable. Examples are provided by path (field) integrals

with real instantons and, thus, physical barrier penetration.

This occurs in quantum mechanics for potentials with degenerate minima.

Quantum tunnelling generates additional contributions (instanton contri-

butions) to energy eigenvalues of order exp(−const. /~), which have to be

added to the expansion in powers of ~, and implies non-Borel summability.

In non-Borel summable situations, the determination of eigenvalues start-

ing from their expansion for ~ small is a non-trivial problem.

The problem has been explicitly solved first in the case of the quartic

double-well potential and the solution has later been generalized.



Generalized Bohr–Sommerfeld quantization formulae

The exact form of the small ~ expansion has been conjectured first in the

case of the quartic double-well potential. We describe and motivate here

the conjecture in this case, though the conjecture has been later generalized

to potentials that are more general entire functions.

Note that, in what follows, the symbol g plays the role of ~ and the

energy eigenvalues are measured in units of ~, a normalization adapted to

perturbative expansions (by contrast with WKB expansions).

A few references:

J. Zinn-Justin, Nucl. Phys. B192 (1981) 125; B218 (1983) 333; J. Math.

Phys. 25 (1984) 549.

U.D. Jentschura and J. Zinn-Justin, Phys. Lett. B 596 (2004) 138-144.

J. Zinn-Justin and U.D. Jentschura, Ann. Phys. NY 313 (2004) 197-267;

ibidem 313 (2004) 269-325; U.D. Jentschura and J. Zinn-Justin, Ann. Phys.

NY 326 (2011) 2186-2242.



The quartic double-well potential

The Hamiltonian corresponding to the quartic double-well potential can be

written as

H = −g
2

(

d

dq

)2

+
1

g
V (q), V (q) =

1

2
q2(1− q)2.

The Hamiltonian is symmetric in the exchange q ↔ 1−q and thus commutes

with the corresponding reflection operator P :

Pψ(q) = ψ(1− q) ⇒ [H,P ] = 0 .

The eigenfunctions ψǫ,N (q) of H, where ǫ = ±1, satisfy

Hψǫ,N (q) = Eǫ,N (g)ψǫ,N (q), Pψǫ,N (q) = ǫψǫ,N (q),

and Eǫ,N (g) = N + 1/2 +O(g).



We have conjectured that the eigenvalues Eǫ,N (g) have a complete (hyper-

asymptotic) semi-classical expansion of the form

Eǫ,N (g) =
∑

n=0

ǫnE
(n)
N (g) with E

(0)
N (g) =

∑

k

E
(0)
Nkg

k and

E
(n>0)
N (g) =

(

2

g

)Nn (

−e−1/6g

√
πg

)n n−1
∑

l=0

[ln(−2/g)]
l
E

(n)
Nl (g),

where E
(0)
N (g) and E

(n)
Nl (g) are power series not Borel summable for g > 0.

In this expansion, they have to be first summed for g negative (where

they are Borel-summable) and the values for g positive are then obtained by

analytic continuation, consistently with the determination of ln(−g). In the

analytic continuation from g negative to g positive, the Borel sums become

complex with imaginary parts exponentially smaller by about a factor e−1/3g

than the real parts. These imaginary contributions are cancelled by the

perturbative imaginary parts generated from the function ln(−2/g).



Moreover, we have conjectured that all the series E
(0)
N (g), E

(n)
Nl (g) can be

obtained by expanding, for g → 0, a generalized Bohr–Sommerfeld quanti-

zation formula, which in the case of the double-well potential reads

1

2π
Γ2( 12 −B)

(

−2

g

)2B(E,g)

e−A(E,g) +1 = 0 .

The functions A and B are given by asymptotic series of the form

B(E, g) = −B(−E,−g) = E +

∞
∑

k=1

gkbk+1(E),

A(E, g) = −A(−E,−g) = 1

3g
+

∞
∑

k=1

gkak+1(E).

The coefficients bk(E) and ak(E) are polynomials in E, alternatively odd

or even, of degree k. The three first orders, for example, are

B(E, g) = E + g
(

3E2 + 1
4

)

+ g2
(

35E3 + 25
4 E

)

+O
(

g3
)

,

A(E, g) = 1
3g

−1 + g
(

17E2 + 19
12

)

+ g2
(

227E3 + 187
4 E

)

+O
(

g3
)

.



Multi-instanton contributions at leading order

When the functions A and B are approximated by their leading order, resp.,

the spectral equation reduces to (ǫ = ±1)

e−1/6g

√
2π

(

−2

g

)E

= − ǫi

Γ( 12 − E)
⇔ cosπE

π
= ǫi

e−1/6g

√
2π

(

−2

g

)E
1

Γ( 12 + E)
.

From the viewpoint of the path integral representation, this approximated

spectral equation then corresponds to a summation of the leading order

multi-instanton contributions.

For example, the term of order e−1/6g in the expansion of EN ,

E
(1)
N (g) = − 1

N !

(

2

g

)N+1/2 e−1/6g

√
2π

(

1 +O(g)
)

,

is the one-instanton contribution.



The term of order e−2/6g,

E
(2)
N (g) =

1

(N !)
2

(

2

g

)2N+1 e−1/3g

2π
[ln(−2/g)− ψ(N + 1) +O (g ln g)] ,

(ψ = (lnΓ)′) can be identified with the two-instanton contribution.

More generally, the term of order e−n/g, the n-instanton contribution,

has at leading order the form

E
(n)
N (g) =

(

2

g

)n(N+1/2) (

−e−1/6g

√
2π

)n
[

P
(n)
N

(

ln(−g/2)
)

+O
(

g (ln g)
n−1

)]

,

in which P
(n)
N (σ) is a polynomial of degree (n− 1).



Verifications: large order behaviour of perturbation series. After an ana-

lytic continuation from g negative to g positive, the Borel sums become com-

plex with an imaginary part exponentially smaller by about a factor e−1/3g

than the real part. Simultaneously, the function ln(−2/g) also becomes

complex with an imaginary part ±iπ. Since the sum of all contributions is

real, the imaginary parts must cancel. For example, the non-perturbative

imaginary part of the Borel sum of the perturbation series E
(0)
0 (g) cancels

the perturbative imaginary part of the two-instanton contribution:

ImE
(0)
0 (g) ∼

g→0+

1

πg
e−1/3g Im

[

P
(2)
0

(

ln(−g/2)
)

]

= −1

g
e−1/3g .

The coefficients E
(0)
0k of the perturbative expansion have the integral repre-

sentation (k > 1):

E
(0)
0k =

1

π

∫ ∞

0

Im
[

E
(0)
0 (g)

] dg

gk+1
.



From the asymptotic estimate of ImE
(0)
0 for g → 0, on then derives the

large order behaviour of the perturbative expansion (checked numerically):

E
(0)
0k =

k→∞
− 1

π
3k+1k! (1 +O(1/k)) .

Similarly, from ImP
(3)
0 one derives the large order behaviour of the expan-

sion of the one-instanton contribution (also checked numerically):

E
(1)
0k =

k→∞
−3k+2

π
k!

[

ln 6k + γ +O

(

ln k

k

)]

.

Other verification: the real part of the two-instanton contribution. Consid-

ering two lowest eigenvalues E± of H, we have calculated the ratio

∆(g) = 4

{

1
2 (E+ + E−)− Re

[

Borel sum of E
(0)
0 (g)

]}

(E+ − E−)
2 (ln 2g−1 + γ)

.



In the sum (E+ + E−), contributions corresponding to an odd number of

instantons cancel. For g → 0 , the numerator thus is dominated by the

real part of the two-instanton contribution proportional to ReP (2). The

difference (E+ − E−) is dominated by the one-instanton contribution.

Using explicit expressions, and performing an expansion in powers of

g and inverse powers of ln(2/g) and keeping only the first few terms in

{1/ ln(2/g)} in each term in the g-expansion, one finds

∆(g) = 1 + 3g − 23
2

g
ln(2/g)

[

1− γ
ln(2/g) +

γ2

ln2(2/g)
+O

(

1
ln3(2/g)

)]

+ 53
2 g

2 − 135 g2

ln(2/g)

[

1− γ
ln(2/g) +

γ2

ln2(2/g)
+O

(

1
ln3(2/g)

)]

+O
(

g3
)

.

The higher-order corrections, which are only logarithmically suppressed

with respect to the leading terms 1+ 3g, change the numerical values quite

significantly, even for small g.
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Another example: The periodic cosine potential

For illustration purpose, we mention another example that has been investi-

gated thoroughly, the cosine potential 1
16 (1− cos 4q), which differs from the

preceding one because the potential is still an entire function but no longer a

polynomial.The periodicity of the potential allows classifying eigenfunctions

according to their behaviour under a translation of one period:

ψϕ(q + π/2) = eiϕ ψϕ(q).

The conjectured spectral equation then takes the form
(

2

g

)−B eA(E,g)/2

Γ( 12 −B)
+

(−2

g

)B e−A(g,E)/2

Γ( 12 +B)
=

2 cosϕ√
2π

.

The first few terms of the perturbative expansions of the functions A and

B are
B = E + g

(

E2 + 1
4

)

+ g2
(

3E3 + 5
4E

)

+O
(

g3
)

,

A = g−1 + g
(

3E2 + 3
4

)

+ g2
(

11E3 + 23
4 E

)

+ O
(

g3
)

.



Perturbative and WKB expansions from Schrödinger equations

In the simplest examples these conjectures, motivated by semi-classical eval-

uations of path integrals (instanton calculus), have obtained independent

confirmation by considerations based on the Schrödinger equation.

We consider the Schrödinger equation written as

[Hψ](q) ≡ −g
2
ψ′′(q) +

1

g
V (q)ψ(q) = Eψ(q).

The restriction to potentials V (q) that are entire functions allows extending

the Schrödinger equation and its solutions to the q complex plane.

To generate semi-classical expansions, it is convenient to derive a Riccati

equation from the Schrödinger equation by setting

S(q) = −gψ′/ψ , ⇒ gS′(q)− S2(q) + 2V (q)− 2gE = 0 .

We further set S = S+ + S−, where in the sense of a series expansion

S±(q,−g,−E) = ±S±(q, g, E).



Then, the Riccati equation decomposes into

gS′
− − S2

+ − S2
− + 2V (q)− 2gE = 0 , gS′

+ − 2S+S− = 0 .

The Fredholm determinant of H − E is related to S+ by

ln det(H − E) = tr ln(H − E) =
1

g

∫

dq S+(q, E).

On infers that the spectral equation, or quantization condition, can then be

written as

1

2iπg
lim

ε→0+

∫

dq [S+(q, EN − iε)− S+(q, EN + iε)] = N + 1
2 , N ≥ 0 .

In the case of analytic potentials, the domain of integration can be locally

deformed in the q complex plane into a contour C that encloses the N zeros

of the eigenfunction. The spectral equation then becomes

B(EN , g) ≡ − 1

2iπg

∮

C

dz S+(z, EN ) = N + 1
2 ·



WKB and perturbative expansions

This elegant formulation, restricted, however, to one dimension and analytic

potentials, bypasses the difficulties generally associated with turning points

and thus allows connecting perturbative and WKB expansions.

Potential with unique minimum. We first assume that the potential V

has a unique minimum at q = 0 with V (0) = 0.

A systematic expansion for g → 0, at Eg fixed, of the solution of the

Riccati equation in the complex q-plane, inserted into the expression

B(E, g) = − 1

2iπg

∮

C

dz S+(z, E),

leads to the ‘exact’ WKB expansion.

At leading order, one finds

S(q) ∼ S+(q) = S0(q), S0(q) =
√

2V (q)− 2gE .



For E > 0, the function S0 has two branch points q1 < q2 on the real axis.

We place the cut between q1 and q2 and choose the determination of S0 to

be positive for q > q2.

In the semi-classical limit, the contour C in the spectral equation encloses

the cut of S0(q). One recovers the Bohr–Sommerfeld quantization condition

in the form

B(E, g) = − 1

2iπg

∮

C

dz
√

2V (z)− 2Eg = N + 1
2 .

In this form, the WKB expansion can be further expanded in powers of g

at E fixed, to recover the perturbative expansion.

Potentials with degenerate minima

We now consider potentials of double-well type, with two degenerate minima

as displayed in the figure. For E small enough, the function S0(q) has now

four branch points q1, . . . , q4 on the real axis.



V (q)

q1 q2 q3 q4

q
q0

Fig. 3 Potentials with degenerate minima: The four turning points.

Intuitively, one expects the spectral equation to now involve two functions

B1(E, g) and B2(E, g) obtained by integrating S0 around the two cuts

[q1, q2] and [q3, q4]. However, starting from E large, a careful analysis shows

that the contour C ′ that surrounds the cut along [q2, q3], when the cuts of

S0 are placed differently, is also involved.



Comparing with conjectured form of the spectral equation, one then infers

1

g

∮

C′

dz S+(z) = A(E, g) + ln(2π)−
2

∑

i=1

ln Γ
(

1
2 −Bi(E, g)

)

+Bi(E, g) ln(−g/2Ci),

where the Ci’s are normalization constants and A(E, g) is the function that

appears in the generalized Bohr–Sommerfeld formula.

The expansion for Eg small of its WKB expansion yields the perturbative

expansion of the function A(g, E). To identify with the WKB expansion,

the function Γ( 12 − B) has to be replaced by its asymptotic expansion for

B large:

− ln Γ( 12 −B) ∼
E→∞

B ln(−B)−B ∼
g→0

B ln(−E) + · · · .



More recently, further insight into the algebraic properties of these expan-

sions and the cancellation of imaginary contributions has been reported in

G.V. Dunne and M. Ünsal, Generating energy eigenvalue trans-series

from perturbation series, [hep-th] arxiv:1306.4405.

In particular, a direct relation between the functions A and B has been

derived:
∂Epert.

∂B
= −6Bg − 3g2

∂A

∂g

∣

∣

∣

∣

B

.

An identical relation, up to the coupling normalization, holds for the cosine

potential:
∂Epert.

∂B
= −2Bg − g2

∂A

∂g

∣

∣

∣

∣

B

,

or for the Fokker–Planck quartic potential. It remains to generalize these

relations for asymmetric wells, multiple wells and to discover an instanton

interpretation.



Instantons and multi-instantons: the quartic double-well

The initial motivation for our conjectures came from a summation of leading

order multi-instanton contributions to path integrals.

Partition function and spectrum

The path integral formalism allows calculating directly the quantum par-

tition function, which for Hamiltonians with a discrete spectrum has the

expansion

Z(β) ≡ tr e−βH =
∑

N≥0

e−βEN .

The spectrum can be inferred from the Fredholm determinant D(E) =

det(H − E) and thus from the trace G(E) of the resolvent of H, which

is related to the partition function by

G(E) = tr
1

H − E
=

∫ ∞

0

dβ eβE Z(β) ,
d

dE
lnD(E) = G(E).



For the double-well potential V (q) = 1
2q

2(1− q)2, one can use the reflection

operator Pψ(q) = ψ(1 − q) to separate eigenvalues according to the sym-

metry properties of eigenfunctions in the exchange q ↔ (1− q). This leads

to consider the two functions

Z±(β) = tr
[

1
2 (1± P ) e−βH

]

=
∑

N=0

e−βE±,N = 1
2

(

Z(β)±Za(β)
)

.

In the path integral formulation,

Z(β) ≡ tr e−βH =

∫

q(−β/2)=q(β/2)

[dq(t)] e−S(q)/g,

Za(β) ≡ tr
(

P e−βH
)

=

∫

q(−β/2)+q(β/2)=1

[dq(t)] e−S(q)/g,

where S(q) is the euclidean action,

S(q) =
∫ β/2

−β/2

[

1
2 q̇

2(t) + V
(

q(t)
)]

dt .



Perturbation theory. For g → 0, Z(β) can be evaluated by the steepest

descent method applied to the path integral. The two saddle points q(t) ≡ 0

and q(t) ≡ 1 give the same contribution. Thus, the eigenvalues are twice

degenerate to all orders in a perturbative expansion in powers of g:

E±,N (g) ≈ E
(0)
N (g) ≡

∞
∑

k=0

E
(0)
N,kg

k.

Instantons: the two lowest eigenvalues (β → ∞). In the case of the

path integral representation of Za(β), constant solutions of the euclidean

equation of motion do not satisfy the boundary conditions.

The lowest eigenvalues are obtained in the infinite β limit. Solutions with

an action that then has a finite limit, necessarily correspond to paths which

connect two minima of the potential. Non-constant solutions with finite

action are called instanton solutions.
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Fig. 4 The one-instanton configuration.

For the quartic double-well potential, such solutions for β → ∞ are

qc(t) =
(

1 + e±(t−t0)
)−1

⇒ S(qc) = 1/6 ,

where for β finite, t0 ∈ [−β/2, β/2]. Thus, Za(β) = O(e−1/6g). Taking

the time t0 as a collective coordinate, and integrating over the remaining

fluctuations in the Gaussian approximation, one infers for the two lowest

eigenvalues (ǫ = ±1)

Eǫ,0(g) = lim
β→∞

− 1

β
lnZǫ(β) ≈

g→0
E

(0)
0 (g)− ǫE

(1)
0 (g), E

(1)
0 (g) ∼ 1√

πg
e−1/6g .
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Fig. 5 A two-instanton configuration.

The two-instanton configurations

Two-instanton configurations depend on one additional time parameter θ,

the separation between instantons, in the limit θ → ∞ decompose into two

instantons (see figure) and for θ large must minimize the variation of the

action. A configuration that satisfies these conditions can be obtained in

the following way: we parametrize the one-instanton solutions as

q±(t) = f
(

∓(t− t0)
)

, f(t) = 1/
(

1 + et
)

= 1− f(−t).



Then, the two-instanton configuration, up to a global translation, can be

chosen as

qc(t) = f(t− θ/2) + f(−t− θ/2)− 1 = f(t− θ/2)− f(t+ θ/2).

The corresponding classical action is

S(qc) = 1
3 − 2 e−θ +O

(

e−2θ
)

.

In analogy with the partition function of a classical gas (instantons being

identified with particles), one calls the quantity −2 e−θ interaction potential

between instantons.

It is simple to extend the result to β large but finite. Symmetry between

θ and β − θ indeed implies

S(qc) = 1
3 − 2 e−θ −2 e−(β−θ)+ exponentially smaller contributions.



The n-instanton configuration

More generally, the n-instanton configuration, which is constructed from n

instantons separated by times θi with

∑n
i=1θi = β ,

yields the classical action

Sc(θi) =
n

6
− 2

n
∑

i=1

e−θi +O
(

e−(θi+θj)
)

.

For n even, the n-instanton configurations contribute to tr e−βH , while for

n odd they contribute to tr
(

P e−βH
)

.

The integration over the Gaussian fluctuations around the multi-instantons

at fixed collective coordinates θi can then be performed explicitly.



The n-instanton contribution: discussion

To go beyond the one-instanton approximation, one must take into account

the interaction between instantons. However, one notices that the inter-

action between instantons, −2 e−θ /g, for g > 0 is attractive. Therefore,

for g → 0, the path integral is dominated by configurations in which the

instantons are close. However, for θi finite the concept of instanton is no

longer meaningful, since the configurations cannot be distinguished from

fluctuations around the constant or the one-instanton solution.

Such a difficulty could have been anticipated. Indeed, the large order

behaviour analysis shows that the perturbative expansion in the case of

potentials with degenerate minima is not Borel summable and ambiguous

at the two-instanton order. But then the notion of contributions of the

two-instanton order e−(2/6)g, or even smaller, is not meaningful.

To proceed any further, one must provide a definition for the sum of the

perturbative expansion.



In the example of the double-well potential, one can prove that the per-

turbation series is Borel summable for g negative. Simultaneously, for g

negative, the interaction between instantons becomes repulsive and the in-

stanton configurations become meaningful. Therefore, we define the sum

of the complete perturbative expansion, including multi-instanton contri-

butions, as the analytic continuation from g < 0 negative to |g| ± i0 of all

quantities consistently.

With this definition, summing explicitly the leading order multi-instanton

contributions, one obtains the spectral conditions

∆ǫ(E) =
1

Γ( 12 − E)
+ ǫi

(

−2

g

)E e−1/6g

√
2π

= 0,

which, initially, have motivated our conjectures.


