Impact of Incoherent Transverse Wakefield on Storage Ring Optics

P. Brunelle, L.S. Nadolski, R. Nagaoka
E = 2.75 GeV

Tunes = 18.176 / 10.234

ex = 4 nm.rad
Magnetic Structure

25 Insertion Devices

\[\beta_x (m) \]

\[\beta_z (m) \]

10 \(\eta_x(m) \)

0 20 40 60 80

s (m)

Medium straight section X 12
Short straight section X 8
Long straight section X 4
Variation of Injection Efficiency versus Tunes

Injection Efficiency (%)

ID configuration

Bare machine + WSV50 + HU80 + 1 U20 + 4 U20 + U18 + HU36 + HU640 Typical configuration

- nux = 18.155; nuz = 10.229
- nux = 18.150; nuz = 10.223
- nux = 18.140; nuz = 10.220
Variation of Beam Lifetime versus Tunes

Beam lifetime @ 430 mA (h)

ID configuration

- Bare machine
- + WSV50
- + HU80
- + 1 U20
- + 4 U20 + U18
- + HU36 + HU640
- Typical configuration

- nux = 18.155; nuz = 10.229
- nux = 18.150; nuz = 10.223
- nux = 18.140; nuz = 10.220
Circular resistive-wall chamber
- no transverse wake is created
- due to the symmetry, as long as the driving beam stays on axis

Pioneering studies:
- A. Burov, V. Lebedev “Transverse Resistive Wall Impedance for Multi-Layer Flat Chambers”, EPAC 2002
For SOLEIL with vertically low gap chambers in most of the ring, the incoherent wake was evaluated to be non-negligible for both single and multibunch modes (R. Nagaoka, EPAC 2004)

Circulart resistive-wall chamber
• no transverse wake is created
• due to the symmetry, as long as the driving beam stays on axis

Non-circular resistive-wall chamber
• a transverse wake is created even if the driving beam stays on axis.
• Non-oscillating wakefields add up to build an extremely long range field.
• Its leading field component is “quadrupolar” type. Trailing particles are focused (defocused) "incoherently".
• Focusing strength depends linearly on the beam current and on the cross section geometry.

Pioneering studies:
- A. Burov, V. Lebedev “Transverse Resistive Wall Impedance for Multi-Layer Flat Chambers”, EPAC 2002
Vacuum Chamber Vertical Size Limitations

Standard chambers
X = 2 x 35 mm
Z = 2 x 12.5 mm

Long SS chambers
X = 2 x 28 mm
Z = 2 x 7 mm

Medium SS chambers
X = 2 x 23 mm
Z = 2 x 5 mm

Length = 10.6 m
Length = 5.6 m
Vacuum Chamber Vertical Size Limitations

Standard chambers
\[X = 2 \times 35 \text{ mm} \]
\[Z = 2 \times 12.5 \text{ mm} \]

Long SS chambers
\[X = 2 \times 28 \text{ mm} \]
\[Z = 2 \times 7 \text{ mm} \]

Medium SS chambers
\[X = 2 \times 23 \text{ mm} \]
\[Z = 2 \times 5 \text{ mm} \]

Short SS In vacuum U20 undulators
\[X = 2 \times 52.5 \text{ mm} \]
\[Z = 2 \times 2.75 \text{ mm} \]

Long SS Vertical Scraper
\[X = 2 \times 35 \text{ mm} \]
\[Z = 2 \times 4.1 \text{ mm} \]

- **Length = 10.6 m**
- **Length = 5.6 m**
- **Length = 1.8 m**
- **Length = 0.082 m**
Incoherent Tune Shift versus Current for the Bare Machine

416 Bunch Filling Pattern (4/4)

Bunch current (mA) = 0.24 0.48 0.72 0.96 1.20
• Measure Response Matrix

(122 BPM, 57 H-correctors, 57 V-correctors)

• Adjust the Model to fit the Measured Response Matrix taking into account measured Dispersion, BPM noise, ...

• Use of the 163 quadrupoles of the machine and 24 virtual quadrupoles located at the middle of the straight sections

\[\Delta v_x = + 0.0066 \]
\[\Delta v_z = - 0.0068 \]
Main focusing effect comes from long and medium SS
Main focusing effect comes from long and medium SS

- Cryomodule n°1
 - In-vacuum undulator U24 + standard chamber

- Cryomodule n°2
 - In-vacuum undulator U18 + standard chamber
300 mA - Bare Machine – Virtual Quadrupole gradient

KL (m⁻¹)

Long SS Medium SS Short SS
$\Delta \nu_x = +0.0058\ (+0.0066) \quad \Delta \nu_z = -0.0038\ (-0.0068)$
Adjustment using the 163 quadrupoles of the machine
Adjustment when adding 24 virtual quadrupoles
Comparison 300 mA / 500 mA - Bare Machine – β-beating

\[\Delta \nu_x = +0.0108 \] for 500 mA

\[\Delta \nu_z = -0.0094 \] for 500 mA

\[\Delta \nu_x = +0.0066 \] for 300 mA

\[\Delta \nu_z = -0.0068 \] for 300 mA
Comparison 300 mA / 500 mA
Bare Machine – Virtual Quadrupole gradient

KL (m^-1)
Comparison 300 mA / 500 mA
Bare Machine – Virtual Quadrupole gradient

\[y = 1.5575x - 6E-05 \]
300 mA – 6 x In-vacuum Undulators are closed at 5.5 mm gap
Quadrupole gradient variation

"In-vacuum Undulators are closed"
"Bare Machine"
300 mA – 6 x In-vacuum Undulators are closed at 5.5 mm gap

Tune variation

Total tune variation when In-vacuum Undulators are closed

\[\Delta v_x = +0.0203, \Delta v_z = +0.0094 \]

Total tune variation for the Bare Machine

\[\Delta v_x = +0.0066, \Delta v_z = -0.0068 \]
18 mA – 6 x In-vacuum Undulators are closed at 5.5 mm gap

Magnetic contribution measured at low current

"In-vacuum Undulators are closed @ 300 mA"
"Magnetic contribution @ 18 mA"
Total tune variation when In-vacuum Undulators are closed @ 300 mA

\[\Delta \nu_x = +0.0203, \Delta \nu_z = +0.0094 \]

Tune variation due to Magnetic contribution @ 18 mA

\[\Delta \nu_x = +0.0079, \Delta \nu_z = +0.0172 \]
Total tune variation when In-vacuum Undulators are closed

\[\Delta \nu_x = +0.0203, \Delta \nu_z = +0.0094 \]

Tune variation due to Magnetic contribution

\[\Delta \nu_x = +0.0079, \Delta \nu_z = +0.0172 \]

Tune variation due to Wakefield Effect

\[\Delta \nu_x = +0.0058, \Delta \nu_z = -0.0010 \]

Total tune variation for the Bare Machine

\[\Delta \nu_x = +0.0066, \Delta \nu_z = -0.0068 \]

Optical functions in short SS: \(<\beta_x> = 14.3 \text{ m}, <\beta_z> = 2.4 \text{ m}\)
300 mA – 6 x In-vacuum Undulators are closed at 5.5 mm gap

Incoherent Transverse Wakefield Effect

In vacuum U20 undulators

\(X = 2 \times 52.5 \text{ mm} \)
\(Z = 2 \times 2.75 \text{ mm} \)

Length = 1.8 m

Long SS chambers

\(X = 2 \times 28 \text{ mm} \)
\(Z = 2 \times 7 \text{ mm} \)

Length = 10.6 m

Medium SS chambers

\(X = 2 \times 23 \text{ mm} \)
\(Z = 2 \times 5 \text{ mm} \)

Length = 5.6 m

Incoherent \(\Delta \nu_x = +0.0058 \)
Total length = 10.8 m
\(<\beta_x> = 14.3 \text{ m} \)
\(G \times L = 0.046 \text{ T} \)
\(G = 0.0043 \text{ T/m} \)

Incoherent \(\Delta \nu_x = +0.0066 \)
Total length = 71.6 m
\(<\beta_x> = 5.8 \text{ m} \)
\(G \times L = 0.130 \text{ T} \)
\(G = 0.0018 \text{ T/m} \)
• At SOLEIL, the non circular low gap chambers generate large incoherent tune shifts as predicted by calculations.
• At SOLEIL, the non circular low gap chambers generate large incoherent tune shifts as predicted by calculations.

• The incoherent transverse wakefield contribution of low gap in-vacuum undulators is not negligible in terms of focusing strength. At SOLEIL, the effect is amplified by the β_x high value.

• For machines of the future, the effect will be amplified by smaller vertical apertures.
At SOLEIL, the β-beat does not affect so much the beam lifetime and the injection efficiency
• At SOLEIL, the β-beat does not affect so much the beam lifetime and the injection efficiency

→ The optics is restored on the model only at low current, for the bare lattice.
At SOLEIL, the β-beat does not affect so much the beam lifetime and the injection efficiency.

→ The optics is restored on the model only at low current, for the bare lattice.

However, tune variations affect beam lifetime and injection efficiency when undulators gaps are varying.
At SOLEIL, the β-beat does not affect so much the beam lifetime and the injection efficiency

\rightarrow The optics is restored on the model only at low current, for the bare lattice.

However, tune variations affect beam lifetime and injection efficiency when undulators gaps are varying

\rightarrow Tunes are kept fixed thanks to a global feedback
Thank you for your attention