Electron-cloud instability in the CLIC damping ring for positrons

H. Bartosik, G. Iadarola, Y. Papaphilippou, G. Rumolo

TWIICE workshop, 16.01.2014

TWIICE workshop, H. Bartosik 16.01.2014

Introduction

- Electron cloud can lead to coherent beam instability (see talk of G. Rumolo)
 - Coupled bunch instability → feedback
 - Single bunch instability → emittance growth faster than radiation damping, feedback difficult due to bandwidth (see talk of K. Li)
- Single bunch electron cloud instability depends on
 - electron density
 - optics (beta functions)
 - synchrotron tune
 - chromaticity
 - transverse emittance
 - bunch length

 \cdot ... needs to be studied in detail

• Here: study of single bunch instability for superconducting wigglers

CLIC damping rings

Description	Symbol	Value
Beam energy	E ₀ [GeV]	2.86
Normalized transverse equilibrium emittances	ε _{n,x,y} [nm]	500, 5
Average beta and dispersion functions (Wigglers)	b _{x,y} , D _x [m]	4.2, 9.8, 2.6 x 10 ⁻⁵
Bunch length (rms)	σ _z [mm]	1.6
Synchrotron tune	Q _s	6.5 x 10 ⁻³

Electron cloud simulations

Electron cloud simulations: splitting the problem

The HEADTAIL code: simulation principle

The HEADTAIL code: simulation principle

The HEADTAIL code: simulation principle

Instability threshold for e-cloud in wigglers

- Simulations with uniform electron density
- $_{\circ}$ Electrons in magnetic dipole field (\rightarrow no horizontal motion in HEADTAIL)
 - No (single bunch) instability in horizontal plane

Instability threshold for e-cloud in wigglers

- Simulations with uniform electron density
- Electrons in magnetic dipole field (\rightarrow no horizontal motion in HEADTAIL)
 - No (single bunch) instability in horizontal plane
 - Strong growth of vertical emittance $(\epsilon_{n,y})$ above threshold

 fast growth compared to vertical damping time (2 ms)

 ⇒ local electron densities of 1.2 x 10¹³ m⁻³ in wigglers (25% of circumference) drive beam unstable

Dependence on bunch intensity

- Simulations with uniform electron distributions
- Weak dependence of instability threshold on bunch intensity
 - Studied in view of future optimization of CLIC parameters

Using electron distributions from PyECLOUD

- PyECLOUD simulation for generation of macroparticle distribution
 - 1 ns bunch spacing

See talk of G. ladarola

⇒ Using distribution (just before bunch passage) with maximum central density = most critical for instability

Using electron distributions from PyECLOUD

- PyECLOUD simulation for generation of macroparticle distribution
 - 1 ns bunch spacing
 - Generation of uniform spatial distribution with variable charges/weights

Using electron distributions from PyECLOUD

- PyECLOUD simulation for generation of macroparticle distribution
 - 1 ns bunch spacing
 - Generation of uniform spatial distribution with variable charges/weights
- HEADTAIL simulations with distributions from PyECLOUD
 - Bunch passages with maximum central density along the train

Mitigation with chromaticity?

- Increasing vertical chromaticity is one of the measures against e-cloud instability
- Simulation for uniform e-cloud distribution
 - $\rho_e = 4 \times 10^{13}$ / m³ (equivalent to $\rho_e = 1.6 \times 10^{14}$ / m³ in the wigglers)

 ⇒ Even very high chromaticity not sufficient for beam stability (+ incoherent effects)

Summary and conclusions

- Electron cloud instability simulations with HEADTAIL
 - Decoupled from build-up simulations (computing power)
 - Semi-self consistent by using electron distribution from build-up code
 - Only single bunch instability
- Simulations for wigglers with uniform e⁻ distribution
 - Threshold density in wigglers $\approx 1.2 \times 10^{13} / m^3$
 - Emittance growth rate fast compared to damping times
 - Little dependence on bunch intensity
 - Mitigation by chromaticity not sufficient
- Simulations for wigglers using distribution from PyECLOUD
 - Beam is unstable for all SEY values above build-up threshold (i.e. SEY>1.4)
 - Need to suppress e-cloud build-up!

