

Session 3 summary: Particle Scattering

T. Demma (LAL), E. Karantzoulis (Elettra) and Y. Papaphilippou (CERN)

TWIICE 2014
Topical Workshop on Instabilities,
Impedances and Collective Effects
Synchrotron SOLEIL, 16-17 January 2014

Session 3

14:30 - 15:45	Session "Particle Scattering" Chair: Yannis PAPAPHILIPPOU (CERN)
14:30 - 15:05	Review of Particle Scattering Theo Demma (LAL)
15:05 - 15:25	Design of IBS dominated low emittance ring, Fanouria Antoniou (CERN)
15:25 - 15:45	Intrabeam scattering studies at CESR-TA, Suntao Wang (CESRTA)

The Intrabeam scattering effect

- Theoretical models calculate the IBS growth rates:
- Complicated integrals averaged around the rings
 - Depend on optics and beam properties
- Classical models of Piwinski (P) and Bjorken-Mtingwa (BM)
 - Benchmarked with measurements for hadron beams but not so well for lepton beams
- ➤ High energy approximations **Bane** and **CIMP**
 - Integrals with analytic solutions
- Tracking codes SIRE and CMAD-IBStrack
 - Based on the classical approach
- Several theoretical models and their approximations developed over the years → three main drawbacks:
 - Gaussian beams assumed
 - Betatron coupling not trivial to be included
 - Impact on damping process? H. Bartosik for F. Antoniou

Comparison between theoretical models

- Comparison between the theoretical models for the SLS lattice
- All results normalized to the ones from BM
- Good agreement at weak IBS regimes
- Divergence grows as the IBS effect grows
 - Benchmarking of theoretical models and MC codes with measurements is essential
 H. Bartosik for F. Antoniou

Energy choice for IBS reduction

Broad minimum of the emittances around 2.5 GeV (left) while the IBS effect becomes weaker with energy (right)

- Higher energies are interesting for IBS but not for the emittance requirements
- Energy increase (2.424 \rightarrow 2.86 GeV) \rightarrow reduction of the IBS effect by a factor of 2 (3 \rightarrow 1.5)
- The scaling of the output emittance with energy reflects the domination of damping time or IBS growth time in each energy regime.

H. Bartosik for F. Antoniou

TME optimization with respect to IBS

Algorithm for Macroparticle Simulation of IBS

- •The lattice is read from a MAD (X or 8) files containing the Twiss functions and R transport matrices.
- •6-dim Coordinates of particles are generated (Gaussian distribution at S).
- •The scattering routine is called:
 - –Particles of the beam are grouped in cells.
 - -Particles inside a cell are coupled
 - –Momentum of particles is changed because of scattering.
 - –Invariants of particles and corresponding growth rate are recalculated.
- Particles are tracked at next elemenet a 6-dim R matrix.
- •Radiation damping and excitation effects are evaluated at each turn.

IBS evaluation in SuperB

SuperB V12 LER lattice (~1800IPs)

$$\sigma_z$$
=5.0*10⁻³ m
 δ p=6.3*10⁻⁴
 e_x =1.8*10⁻⁹ m
 e_y =0.25/100* e_x
ppb= 5.7 10¹²

MacroParticleNumber=3 x 10^5 Grid size = $10\sigma_y$ x $10\sigma_x$ # cells = 64 x 64# slices = 64# processors for this run = 64

Theoretical models compared with simulations for Super-B, using IBS-Track and C-MAD codes: one turn evolution of emittance with Intra-beam scattering.

Emittance Evolution in SuperB LER

Evolution of horizontal, vertical and longitudinal emittances under the influence of IBS as obtained by the tracking code for different values of the bunch population: 6x10⁹ (blue), 60x10⁹ (red) and 100x10⁹ (green). Horizontal lines represent the steady state values predicted by Piwinski (full) and Bane (dashed) models for the considered bunch populations.

SIRE: IBS Distribution study

$$p_k(\xi_k) = \frac{1}{\sqrt{2\pi}\sigma_k}e^{-\frac{\xi_k^2}{2\sigma_k^2}}$$

Parameter	χ ² 999	Confidence
Δp/p	3048.7	<1e-15
X	1441.7	<1e-15
Υ	1466.9	<1e-15

Parameter	Value
Eq. ϵ_x (m rad)	2.001e-10
Eq. ϵ_y (m rad)	2.064e-12
Eq. σ_{δ}	1.992e-3
Eq. σ_z (m)	1.687e-3

Various IBS Calculation Methods

- There are several methods for calculating IBS growth rates.
- As part of CesrTA, we have implemented and compared many of them.
- Over a wide range of parameters, we find all give very similar predictions.
- We treat the Coulomb Log the same for each method we have implemented.
 - Piwinski's formulas modified to take impact parameters.

M.P. Ehrlichman et al. PRSTAB 16 (2013) 104401

S. Wang

January 16, 2014 TWIICE 2014

Combined Results vs. Energy

Low ε _ν Conditions		
2.1 GeV	101 % ε _x Blowup	
2.3 GeV	82 % ε _x Blowup	
2.5 GeV	43 % ε _x Blowup	
~ 50 um Vertical Beam Size Conditions		
2.1 GeV	81 % ε _x Blowup	
2.3 GeV	33 % ε _x Blowup	
2.5 GeV	27 % ε _x Blowup	

January 16, 2014 TWIICE 2014 16

Highlight Tail-Cut

Model (with tail-cut) Model (without tail-cut)

(N/bunch)×10¹⁰ **S. Wang**

- The tail-cut is a modification to IBS theory that excludes from the rise time those scattering events that occur less frequently than once per particle per damping period.
- $\frac{1}{\tau_{\rm IBS}} \propto \log \frac{b_{max}}{b_{min}}$
- Weak application of the centrallimit theorem.
- Significant in machines with strong damping.
- Without the tail-cut, IBS theory can significantly over-estimate the equilibrium beam size

M.P. Ehrlichman et al. PRSTAB 16 (2013) 104401

280

260

240

Anomalous Vertical Blow-Up

- Not consistent with IBS model
 - IBS size vs. current plot would be "log like"
- Species-independent
- Sensitive to betatron and synchrotron tunes
- Not sensitive to chromaticity
- FFT of vertical centroid and size does not show a strong signal above noise
- Energy spread measured to be constant, no threshold behavior seen in energy spread vs. current.
- Seen even in large beams
- Coupling (Cbar12) vs. current measured to be constant
- Coherent tune shift plays a part, but not the whole story
- Incoherent tune shift is a suspect, cannot be whole story

S. Wang

January 16, 2014 TWIICE 2014 19

Vertical Beam Size (µm)

EUCARD² Open Questions

- Beam profile modification due to scattering
 - Theory for non-Gaussian beams (B. Nash, PhD thesis)
 - Effect in core particles is "known" (Gaussian core?)
 - Scattering in tails is less evident (Touschek-like effect dominant?)
 - Influence of lattice non-linearities and other collective effects (space-charge, impedance,...)
- Agreement of IBS theories
 - Only a matter of including tail cuts?
 - Influence of optics (especially in high-energy approximations)
- IBS theory including vertical coupling
 - Kubo and Oide formalism, other ideas?
- Impact on damping process
- Effect of Scattering in polarisation and vice versa

EUCARD² Open Questions

- Full employment of particle scattering codes for shedding light in previous questions
 - Benchmarking with measurements
- Disentangling IBS with other collective effects (especially in measurements)
 - Accurate knowledge of machine model and its current dependence (optics distortion, coupling)
- Instrumentation for resolving tails in beam profiles
- Measuring energy spread
 - Especially in absence of good model on longitudinal profile evolution

THANK YOU!!!

TWIICE 2014

Topical Workshop on Instabilities, Impedances and Collective Effects

