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CSR Impedance of Parallel-Plates 
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where h is the distance between two plates,  n=k, Ai and Bi are Airy  
functions, and their argument u is defined as 

An impedance with scaling property is given by 

Dependence of n is all through  

In fact, this scaling property holds for the CSR impedance in free space, 
formally 
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Scaling and Asymptotic Properties 

The scale defines the strength of impedance and the location of the peak 
defines where the shielding effects start.  
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Threshold of Instability 
for CSR of Parallel Metal Plates 
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Threshold  xth becomes a function of the shielding parameter c =sz
1/2/h3/2.  

Simulation was carried out by Bane, Cai, and Stupakov, PRSTAB 13, 
104402 (2010).  For a long bunch, the coasting beam theory agrees well 
with the VFP simulation. 

A dip seen near sz
1/2/h3/2 = 0.25.  
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Summary of the Comparisons 

Machine sz 
[mm] 

Radius 
 [m] 

Height 
h [cm] 

c  xth  

(theory) 
xth 

(meas.) 

BESSY II 2.6 4.23 5.0 0.48 0.67 0.89 

MLS 2.6 1.53 5.0 0.29 0.60 0.39 

ANKA 1.0 5.56 3.2 0.42 0.64 0.50 

SSRL 1.0 8.14 3.4 0.46 0.66 ? 

Diamond 0.7 7.13 3.8 0.25 0.17 ? 0.33 
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ccx 34.05.0)( th
We have used  

where c = sz
1/2/h3/2 is the shielding parameter. This simple relation 

was first obtained by fitting to the result of simulations (Bane, Cai,  
and Stupakov, PRSTAB 13, 104402 (2010)).  
 
Since the MLS’s shielding parameter is very close to the dip. That  
may be a reason of its lower threshold. 



Statements of Problem and Solution 

• Solve the Maxwell 
equation with a 
circulating charge inside a 
perfect conducting 
chamber 

• Express the longitudinal 
impedance in terms of 
Bessel functions 

• Approximate Bessel 
functions with Airy 
functions under the 
uniform asymptotic 
expansion  

A section of vacuum chamber 
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For detail read: SLAC-PUB-15875, January 2014 



CSR Impedance of Rectangular Chamber 
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where w is the width of chamber and h the height,  n=k,  p and s hats are  
products of Airy functions and their derivatives. Similar to the parallel 
plates,  one of arguments u is 

An impedance with scaling property is given by 

Dependence of n is all through  
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In addition, for aspect ratio of A = w/h, the other two arguments are  
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The Cross Products 
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of the Bessel functions of the Airy functions 

The uniform asymptotic expansion: 

1/17/2014 Yunhai Cai, SLAC 8 

))
2

((')
2

()1('

),)
2

((')
2

()1('

),)
2

(()
2

()1(

),)
2

(()
2

()1(

23/23/22

23/23/22

23/23/12

23/23/12

x
n

Bi
n

xnY

x
n

Ai
n

xnJ

x
n

Bi
n

xnY

x
n

Ai
n

xnJ

n

n

n

n











Scaling Property of Point-Charge 
Wakefield 
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The integrated wake can be written as 

where  is bending radius and h height of chamber.  We have defined a 
dimensionless longitudinal position: 
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2/32/1 /ˆ hzz 

which naturally leads to the shielding parameter 

2/32/1 / hz sc 

if we introduce the normalized coordinate q=z/sz. 

• An LRC resonance with infinite quality factor 
• Decay term is due to the curvature   



Dimensionless Rs/Q (A=1) 
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It can be computed by 

or 
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p=1,3,5,7 
46 modes 



Point-Charge Wakefield (A=1) 
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It is extremely hard to simulate a long bunch. 

zoomed in 



Comparisons of Bunch Wake 

c=0.1 

                     Agoh, PRSTAB, 12, 094402 (2009)                 Stupakov & Kotelnikov, PRSTAB, 12 104401 (2009) 

c=0.5 
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excellent agreements 

Fig 4.c 
Fig 11 



Longitudinal Beam Dynamics 
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Hamiltonian is given as 

q=z/sz,  p=-d/sd and W(q) is the integrated wake per turn (convention 
used in Alex Chao’s book). The independent variable is =wst. 

Vlasov-Fokker-Planck equation is written as 

where (q,p;) is the beam density in the phase space and  =1/wstd.  
A robust numerical solver was developed by Warnock and Ellison (2000) . 
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where In is the normalized current introduced by Oide and Yokoya 
(1990) 
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Scaling Law of the Threshold 
In the normalized coordinate, it can be shown easily 
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where                            is the dimensionless current and  

the shielding parameter.  We redefine a dimensionless wake as  

 

 

Clearly, this wake depends on c and aspect ratio A through the values of 

Based on the VFP equation. we conclude that the dimensionless current  

 

 

is a function of other three dimensionless parameters.  
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Rs/Q for Rectangular Chamber 

Envelopes are very similar, also similar to the real part of Z(n)/n 
of the parallel model shown previously. 

A=w/h=2 
p=1,3,5 
112 modes 

A=w/h=3 
p=1,3,5 
204 modes 
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VFP Simulation 
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A square chamber has a much lower threshold: xth=1/4. 

cx 34.05.0 th



Mitigation of CSR Effects 
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Rewrite the threshold in terms of some practical parameters. The beam  

becomes unstable if   

• Extremely unfavorable 
scaling in terms of 
shortening bunch 

• Stronger longitudinal 
focusing is very helpful 

• Superconducting RF at 
higher frequency 

Shorten the bunch to 1 ps  in PEP-X 



Conclusion 

• The scaling law found in the parallel-plate mode 
is extended to the rectangular chamber by adding 
another parameter: A (aspect ratio of the 
chamber)  

• The threshold of a square chamber is lower by a 
factor than the one of a rectangular chamber 
with A > 2 

• More effective mean to shorten a bunch to a ps 
scale is to use superconducting RF at higher 
frequency  

1/17/2014 Yunhai Cai, SLAC 18 



Important and Relevant References 
• R. Warnock and P. Morton, “Fields Excited by a Beam in a Smooth 

Toroidal Chamber,” SLAC-PUB-5462 March (1988); Also Pat. Accel.  
• J. Murphy, S. Krinsky, and R. Gluckstern, “Longitudinal Wakefield for 

an Electron Moving on a Circular Orbit,” Pat. Accel. 57, pp. 9-64 
(1997) 

• T. Agoh and K. Yokoya, “Calculation of coherent synchrotron 
radiation using mesh,” Phys. Rev. ST Accel. Beams 7, 0544032 
(2004) 

• T. Agoh, “Steady fields of coherent synchrotron radiation in a 
rectangular pipe,” Phys. Rev. ST Accel. Beams 12, 094402 (2009) 

• G. Stupakov and I. Kotelnikov, “Calculation of coherent synchrotron 
radiation impedance using mode expansion method,” Phys. Rev. ST 
Accel. Beams 12, 104401 (2009) 

• K. Bane, Y. Cai, and G. Stupakov, “Threshold studies of microwave 
instability in electron storage rings,” Phys. Rev. ST Accel. Beams 13, 
104402 (2010) 

1/17/2014 Yunhai Cai, SLAC 19 



Acknowledgements 

• My colleagues: Karl Bane, Alex Chao, Gennady 
Stupakov, and Bob Warnock for many helpful and 
stimulating discussions, their insights, collaborations, 
and encouragements 

• Marit Klein (ANKA), A.-S. Muller (ANKA),  
    G. Wustefeld (BESSY, MLS), J. Corbett (SSRL),  
    F. Sannibale (LBNL), I. Martin (Diamond) for many 

helpful email exchanges and providing their 
experimental data and plots 

 

1/17/2014 20 Yunhai Cai, SLAC 



Transverse Impedance  
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where w is the width of chamber and h the height,  n=k,  p and s hats are  
products of Airy functions and their derivatives. Similar to the parallel 
plates,  one of arguments u is 

An impedance with scaling property is given by 

Dependence of n is all through  
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In addition, for aspect ratio of A = w/h, the other two arguments are  
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Transverse Wakefield 

)]ˆˆexp(
2

1
)ˆˆsin()ˆ([)ˆ(]ˆ[ 2/5

2/1

1 zkzkzk
Q

cR
zW jj

j

j
s

h
  

The integrated wake can be written as 

where  is bending radius and h height of chamber.  We have defined a 
dimensionless longitudinal position: 
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2/32/1 /ˆ hzz 

which naturally leads to the shielding parameter 

2/32/1 / hz sc 

if we introduce the normalized coordinate q=z/sz. 

• An LRC resonance with infinite quality factor 
• Decay term is due to the curvature   



Dimensionless cRs/Q (A=1) 
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p=1,3,5,7 
46 modes 



Transverse Instability 
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In the normalized coordinates, Hamiltonian is given by 
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If we define a dimensionless current  
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we derive a scaling law  
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