Recent Developments in Wakefield and Impedance Computation

Boris Podobedov
boris@bnl.gov

January 16, 2014
Motivation: Could There Be Anything New in Wakefields & Impedances?

- It’s a pretty well-studied subject
- Maxwell’s equations are 150 years old
- Many textbooks and hundreds of papers exit
- Codes are getting ever more powerful
More Powerful Codes are Available

Packages for computer simulations of electromagnetic EM fields and more

- CST
- GdfidL
- HFSS
- ACE3P
- COMSOL

An Excellent Review of Codes was Recently Presented by Alexej Grudiev at CERN

http://indico.cern.ch/contributionDisplay.py?contribId=11&confId=243336

Summary

1. CST
 - Larger objects in TD
 - Better FD calculations, 3D EM + circuit co-simulation, RF + thermal + structural
 - More multiphysics

2. GdfidL
 - Accurate solution for very larger objects in TD and FD

3. ACE3P

26-27 June 2013 CERN

Electromagnetic field simulations for accelerator optimization

Boris Podobedov, Jan. 16, 2014
Motivation

• Knowledge of wakefields, incl. geometric ones, is critically important for accelerator beam dynamics.
• Detailed wakefield calculations for realistic vacuum chambers are done with time domain EM solvers, which calculate the fields due to finite length bunches.
• Extremely fine meshes are needed to compute wakes at small distances, so calc’s are slow and lots memory is req’d.
• This is especially true if the structures are very big (compared to bunch length) and smoothly varying.

EM solvers do not calculate point-charge wakefields
For cavity-like structures we use the **diffraction model**:

\[
W_d^\delta (z) = k_d \, z^{-1/2}, \quad z > 0
\]

\[
W_d^\sigma (z) = \frac{k_d}{\sqrt{\sigma}} \, f \left(\frac{z}{\sigma} \right)
\]

\[
k_d = -\frac{Z_0 c}{\pi^2 a} \sqrt{\frac{g}{2}}
\]

\[
f(s) = e^{-s^2/4} \sqrt{\frac{\pi}{8}} s^2 \left(I(-\frac{1}{4}, \frac{s^2}{4}) + \text{sign}(s) I(\frac{1}{4}, \frac{s^2}{4}) \right)
\]

\[I(\ldots)\text{ are Bessel functions}\]

Wake-potentials for all cavity shapes (tapered or not, deep or shallow, etc.) converge to this model for short enough bunches and distances.

Model is easily expandable to 3D geometries.
Fresnel diffraction (from A. Chao's book).
Wakefield is found from energy losses of an ultra-relativistic beam to diffracted waves.
Plane waves diffracted by a straight-edge plane screen is an adequate approximation for beam in cylindrical geometry.
Asymptotic Model for Short-Bunch Wakefields of Collimator-like Structures

• For collimator-like structures use the optical model:

\[W_{opt}^{\delta}(z) = k_{opt} \delta(z) \] \(\text{wake-function} \)

\[W_{opt}^{\sigma}(z) = k_{opt} (2\pi)^{-1/2} \sigma^{-1} e^{-\frac{z^2}{2\sigma^2}} \] \(\text{wake-potential} \)

\[k_{opt} = -Z_0 c \ln(a/b) / \pi \]

• Turns out this model describes all collimator-like structures, including 3D; A recipe to calculate geometry-dependent \(k_{opt} \) exists [see Stupakov, Bane Zagorodnov, PRST-AB 10, 054401 (2007)]
Asymptotic Short-Bunch Wakes are Known, so What’s Missing?

- Asymptotic wakefields are approximate expressions (strongest singularity) at \(z=0 \).
- They fall down very sharply with \(z \), and one cannot say where they get overtaken by other (non-singular) parts of the wake.
- They don’t give us complete picture, i.e. \(W^\delta(z) \) for any \(z \).
Can We Approach Point-Charge Wakes through Geometry Scaling?

Impedance scaling for small angle transitions

G. Stupakov and K. L. F. Bane
SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA

I. Zagorodnov
Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany
(Received 24 September 2010; published 10 January 2011)
Scaling Laws

• Stupakov, Bane, and Zagorodnov show that the following longitudinal impedance and wakefield scaling holds true for
 1) structures of general shape at high frequencies (i.e. >> pipe cutoff)
 2) small angle transitions at all frequencies

\[
Z(\omega; \lambda) = R(\frac{\omega}{\lambda}) \quad (1)
\]

\[
W^\delta (z; \lambda) = \lambda u(z\lambda). \quad (2)
\]

Here \(R \) and \(u \) are functions of one variable, and \(\lambda \) is the longitudinal scale factor between the geometries.

• In terms of the wake-potential due to a finite length bunch, Eqs.(1-2) are equivalent to

\[
W^\sigma (z) = \lambda^{-1} W^\sigma/\lambda (z / \lambda). \quad (3)
\]

where \(W \) and \(W \) stand, respectively, for the wake-potentials due to the original and the scaled structures, and \(\lambda \) relates the longitudinal dimensions by \(L = \lambda L \).

• Similar scaling laws are derived for transverse.
Wake for a 3D Tapered Transition

FIG. 7. The 3D test example is a symmetric, small angle transition. Here we show, in cut view, the geometry of one of the tapers of this transition.

FIG. 8. Longitudinal wake for $\sigma_z = 0.5$ mm bunch in the 3D collimator (blue) and results obtained from the scaled problem (red).

G. Stupakov, K. L. F. Bane, I. Zagorodnov, PRST-AB 14, 014402 (2011)
• ECHO results for the original and $\lambda=1/5$ scaled geometries are shown
• Clearly there is a disagreement in the long range wake
• In ω-domain this disagreement extends way above the cutoff
• In general, scaling in a very large range $\lambda<<1$, doesn’t seem accurate
• More on breakdown is in A. Blednykh, S. Krinsky, PRSTAB 15, 054405 (2012)
Recent Method to Find Point-Charge Wakes

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS
16, 024401 (2013)

Point-charge wakefield calculations from finite length bunch wake potentials

Boris Podobedov
Brookhaven National Laboratory, Upton, New York 11973, USA

Gennady Stupakov
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
(Received 2 November 2012; published 15 February 2013)

• In WEODB1 NAPAC’13 paper we extended this method to transverse wakes
Introducing the Method: Wake of a Step-Out

- Wake-potentials are singular at $\sigma \to 0$
- Subtracting singular part (optical model) we obtain a well-defined limit (black line) at $\sigma \to 0$
 \[D^\sigma(z) = W^\sigma(z) - W_s^\sigma(z) \]
 \[D^\delta(z) = \lim_{\sigma \to 0} D^\sigma(z) \]
- This function is approximated by
 \[D^\delta(z) \approx (\alpha + \beta z) H(z) \]
- Coefficients α and β can be found by fitting (next VG).
- Thus we reconstruct point-charge wakefield (at short z-range)

\[
W_s^\sigma(z) = W_{opt}^\sigma(z) = \frac{Z_0 c \ln(3)}{2^{1/2} \pi^{3/2} \sigma} e^{-\frac{z^2}{2\sigma^2}}
\]
Wake of a Step-Out Con’t: fitting for α and β

- Point-charge and Gaussian bunch functions are related:

$$D^\delta(z) = (\alpha + \beta z) H(z) \quad D^\sigma(z) = \frac{\alpha + \beta z}{2} \left(1 + \text{erf}\left(\frac{z}{\sqrt{2}\sigma}\right)\right) + \frac{\beta \sigma}{\sqrt{2}\pi} e^{-\frac{z^2}{2\sigma^2}}.$$

- α and β can be found by fitting $D^\sigma(z)$ from EM solver for i.e. $|z/\sigma|<3$.

- Take $\sigma_0=2$ mm and apply the fitting. Then use α and β obtained to reconstruct wakes for other values of σ:

- Reconstructed wakes agree well with direct ECHO calculation.
How to Pick σ_0 in EM solver

- Why did the $\sigma_0=2$ mm fit work well? Because $\sigma_0 << \lambda_g$.
- Parameter $\lambda_g > 0$ is the first location of the wake singularity (or singularity of its derivatives) closest to $z=0$.
- $D^\delta(z) = (\alpha + \beta z) H(z)$ cannot be extended beyond $z=\lambda_g$ since the wake derivative is singular ("kink").

- Run EM solver with $\sigma_0 << \lambda_g$, typically $\sigma_0/\lambda_g = 0.1-0.15$ is O.K.
- Running with shorter bunch gives no new information about the wake!
- λ_g can be found by simple geometry analysis.
\(\lambda_g \) Parameter for a Cavity

- Red ray (spherical wave front) eventually catches up with ALL particles in the bunch, thus affecting the wakefield for all values of \(z \).
- Green ray travels \(\lambda_g/c \) behind and it will never catch up with the front of the bunch, so \(\lambda_g \) emerges in the front portion of the wake.
- For other ratios between \(r_{\text{min}}, r_{\text{max}}, \) and \(g \), other combinations may define \(\lambda_g \), i.e. \(\lambda_g = 2g \) for a short cavity or, for a shallow one,

\[
\lambda_g = \sqrt{4(r_{\text{max}} - r_{\text{min}})^2 + g^2 - g}
\]

Similarly \(\lambda_g \) one can find for arb. geometry (see PRST-AB paper)
Shallow Cavity Example

- Our method is NOT shortening the bunch until the EM solver wakes converge (this can fail!)
- For this cavity wakes are \(\sim \) Gaussian; they double as \(\sigma \) shortens each factor of 2, suggesting
- This is totally incorrect!
- It is diffraction model instead

\[\lambda_g \approx 2(r_{\text{max}} - r_{\text{min}})^2 / g = 20 \mu\text{m} \]
Why λ_g is Easy to Find for Arbitrary Geometry

- Green ray does not affect short-range wake for $z < \sqrt{(2r_{\min})^2 + g^2 - g}$.
- Brown ray does not affect short-range wake for $z < \sqrt{4(r_{\max} - r_{\min})^2 + g^2 - g}$.
- By causality, any cavity with radial boundary, $r(s)$, that coincides with the figure for $r(s) < 2r_{\min}$, but otherwise is arbitrarily complex, must have the same short-range wake for $z < \lambda_g$.
- $\Rightarrow \lambda_g$ is defined by the geometry near r_{\min}.
1. Determine analytical singular wake model: \(W_s^\delta (z) \) & \(W_s^\sigma (z) \)

2. Determine \(\lambda_g \)

3. Calculate the wake-potential with your favourite EM solver for \(\sigma_0 << \lambda_g \):
\[W_{ECHO}^\sigma (z) \]

4. Subtract the singular wake:
\[D^\sigma_0 (z) = W_{ECHO}^\sigma (z) - W_s^{\sigma_0} (z) \]

5. Fit the remainder, \(D^\sigma_0(z) \), with the function:
\(\frac{\alpha + \beta z}{2} \left(1 + \text{erf} \left(\frac{z}{\sqrt{2} \sigma_0} \right) \right) + \frac{\beta}{\sqrt{2\pi}} e^{-\frac{z^2}{2\sigma_0^2}} \)

6. Short-bunch wake (for arb. \(\sigma \leq \sigma_0 \)) is then:
\[W^\sigma (z \leq 3\sigma_0) = \frac{\alpha + \beta z}{2} \left(1 + \text{erf} \left(\frac{z}{\sqrt{2} \sigma_0} \right) \right) + \frac{\beta}{\sqrt{2\pi}} e^{-\frac{z^2}{2\sigma_0^2}} + W_s^{\sigma} (z) \]
\[W^\sigma (z > 3\sigma_0) = W_{ECHO}^{\sigma_0} (z) \]

7. For point-charge:
\[W^\delta (z \leq 3\sigma_0) = (\alpha + \beta z) H(z) + W_s^{\delta} (z) \]
\[W^\delta (z > 3\sigma_0) = W_{ECHO}^{\sigma_0} (z) \]

Transverse is very similar
The Method Was Applied to Many Geometries

It worked well for all of them
Simple Cavity Example

- Diffraction-model behaviour near \(z = 0 \)
- Pick \(\sigma_0 = 200 \mu m << \lambda_g \)
 \[D^{\sigma_0}(z) = W_{ECHO}^{\sigma_0}(z) - W_{d0}^{\sigma_0}(z) \]
- Short-bunch wake reconstructed well.

\[\lambda_g = \sqrt{(2r_{\text{min}})^2 + g^2} - g = 1.24 \text{ cm} \]

\(r_{\text{min}} = 1 \text{ cm} \)
\(r_{\text{max}} = 5 \text{ cm} \)
\(g = 1 \text{ cm} \)

\(\lambda_g = \sqrt{(2r_{\text{min}})^2 + g^2} - g = 1.24 \text{ cm} \)

![Diagram](image)

- Graphs showing \(W^{\sigma}(\text{V/pC}) \)
- Graphs showing \(D^{\sigma}, D^{\delta}(\text{V/pC}) \)

- Dots: ECHO
- Lines: rec'd from \(W_{ECHO}^{200 \mu m} \)
The same algorithm works well in the transverse (except the transverse diffraction model is non-singular).

Reconstructed wakes from $\sigma_0 = 2$ mm agree perfectly with direct ECHO calculations.
Wake length-scales can be understood from causality.

Beam fields scattered at corner #1 (shown in green) will never catch up with the head, as they must clear corner #2 getting (at least) λ_g/c delay.

Thus λ_g emerges in the front portion of the wake-field. $W^\delta(z<\lambda_g)$ depends on r_{min} and θ only, while at larger z it depends on L and r_{max} as well.

If $r_{max} > 9r_{min}$, a shorter length scale, $\lambda_g = 4r_{min}\theta$, shows up, because fields that “cut across” (shown in red) acquire a delay of $4r_{min}\theta < L\theta^2/2$.

$W^\delta(z<\lambda_g)$ is very simple (see BP IPAC2012 for analytical results).
Example of a Structure with a Linear Taper

- Since λ_g is known, tapered structures can be easily handled with our method.

\[
\lambda_{g_{\text{taper}}} = \min \left(\frac{1}{2} L \theta^2, 4r_{\min} \theta \right)
\]

\[
\lambda_{g_{\text{cavity}}} = \frac{\lambda_{g_{\text{taper}}}}{1 - L / g}
\]
Smooth Non-Linear Transitions

- Smooth non-linear transitions are common (i.e. SC cavities).
- Esp. important is the case with the slope, $r'(s)$, matched to zero at r_{min}.
- This case results in additional wake singularity.
- Simplest case is a quadratically varying boundary near r_{min}.

$$W_{\text{smooth}}^{\delta}(0 < z \ll \lambda_{g}^{\text{smooth}}) = \kappa z^{-1/3}$$

$$\lambda_{g}^{\text{smooth}} = \int_{0}^{L} \left(1 + r'(s)^2\right)^{1/2} ds - L$$

- Wake-potential can be expressed through hypergeometric functions.
- For simple cases κ can be found analytically, see BP IPAC2012.
Diversion to Creeping Waves

- Diffraction on a smoothed out edge is related to creeping waves
- A creeping wave is diffracted around the shadowed surface of a smooth body.

From Wikipedia
Example of a Smooth Parabolic Transition

- Since singular wakefields and λ_g are known, such structures can be easily handled with our method (for complex structures coefficient κ could be found by fitting).

\[\kappa = Z_0 c \left(6r''\right)^{-1/3} \left(2\pi r_{\text{min}}\right)^{-1} \]

dots – direct calculations with ECHO
lines – reconstructed from ECHO calc’s for 2\(\mu\)m bunch
NSLS-II Landau Cavity

- 1.5 GHz dual cell cavity, $r_{\text{side_pipe}} = 6$ cm
- Final results for the short-range wakes:

To find 10μm bunch wake

Brute force: ~480 hours of Intel(R) Xeon(R) 5570@2.93 GHz CPU to $z_{\text{max}} = 1$ cm.

Our method: uses only $\sigma = 50 \mu$m calc’s, saves a factor of 5^3 on CPU time and 5^2 on memory. Gives a model of the point-charge wake as a bonus.
3D Example

Wakes by I. Zagorodnov, 3D ECHO + CST mesher

~$(1+\text{erf}(z/\sigma/2^{1/2}))$ behavior

- Observe λ_g, where expected
- Expected behavior near the origin; can easily fit point-charge wake α & β
- Same for longitudinal (+ optical model), and for quadrupolar wakes

$\lambda_g = \sqrt{(2b)^2 + g^2 - g} = 3 \text{ mm}$
Summary

• Wakefield calculation is important task for modern accelerators. For large and smooth accelerator structures and short bunches, direct EM solver calc’s can be extremely time-consuming.

• We reviewed several recent developments in geometric wakefield calculations, including new (or more general) short-bunch asymptotic wakefield models, use of scaling laws for small angle transitions, and a new method to obtain point-charge wakefields from an EM solver.

• All the works reviewed provide valuable physics intuition, while some of them also directly result in great savings in computing time required to calculate wake-potentials due to very short bunches.

• The works described are applicable to 2D or 3D geometries.

Thank you