Review of Instrumentation and Feedback for Beam Instabilities

Guenther Rehm
TWIICE workshop, Soleil
16-17 Jan 2014
Overview

- What types of beam instabilities can be observed in storage rings?
- Which Diagnostics can be used directly or indirectly?
- Where are the limits of these Diagnostics?
- What is possible with feedbacks?
- What might become technologically possible in the near future, what would be desirable?
Types of Instabilities

<table>
<thead>
<tr>
<th>Transverse</th>
<th>Single Bunch</th>
<th>Coupled Bunch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strong Head-Tail Instability
Transverse Mode Coupling Instability</td>
<td>Transverse Multibunch Instability
Ion Instability</td>
</tr>
</tbody>
</table>

Transverse Instability Diagrams:

- Strong Head-Tail Instability
- Transverse Mode Coupling Instability

<table>
<thead>
<tr>
<th>Longitudinal</th>
<th>Single Bunch</th>
<th>Coupled Bunch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microwave-Instability
Longitudinal Mode Coupling Instability
Micro-bunching</td>
<td>Longitudinal Multibunch Instability</td>
</tr>
</tbody>
</table>

Longitudinal Instability Diagrams:

- Microwave-Instability
- Longitudinal Mode Coupling Instability
- Micro-bunching
- Longitudinal Multibunch Instability
• Idea: Instabilities have characteristic frequencies!
• A single diagonally offset BPM button will pick up a rich spectrum composed of:
 – RF frequency and harmonics, decreasing in amplitude with Fourier transform of bunch profile
 – Sidebands of revolution frequency with Fourier transform of fill pattern
 – Sidebands of both betatron frequencies if transverse instabilities
 – Sidebands of synchrotron frequency if longitudinal instabilities
• A spectrum analyser allows to look at all this over the whole bandwidth of the pickup (5-10GHz typically), with as fine detail as desired, but not full bandwidth and resolution at the same time!
Spectrum Analyser Example

RF revolution sidebands

chromaticity 2/2

chromaticity 0/0

instabilities

Measurements at Diamond
Spectrum Analyser Limitations

- Dynamic Range: Signal on RF harmonics can be a billion times more powerful than instabilities
 - For transverse observation use 4 buttons and hybrids to suppress monopole signal and look at dipole signal only
 - For longitudinal observation demodulate with out of phase signal of RF harmonic (requires phase lock to machine RF)
- Swept SA only measures one frequency (within resolution bandwidth) at any time
- ‘Real Time’ SA only measures limited bandwidth (a few MHz) at any time, then FFT
Oscilloscope on BPM

- Bandwidth of modern high speed real time sampling oscilloscopes can easily be as large as bandwidth of BPM pickup
- High sampling rates (10s of GS) mean short (a few ms) timescales can be recorded while producing large amounts of data per observation
- This means full bandwidth (many GHz) can be observed with a few 100Hz resolution!
- Coupled bunch motion can be observed in all detail
- If bunches are long (ns timescales) intra bunch motion can be observed
Head-Tail Instability of 1^{10} proton bunch in TEVATRON

Chou, PAC1995, p3091
Digital Bunch-by-Bunch Feedback

- A/D and D/A run synchronous to bunches, every bunch measured
- Provides feedback/damping of coupled bunch instabilities
- Produces a resistive (or reactive) impedance at all mode frequencies
- Longitudinal feedback similar with longitudinal kicker
- Different feedback parameters for individual bunches possible (more in next talk)
Fully synchronous recording of bunch-by-bunch position
Fourier transform of long record give view like spectrum analyser
NOTE: Position reading is multiplied with bunch charge!

Time domain turns stacked

Spectrum with revolution harmonics removed
Grow-Damp Measurements

a) Osc. Envelopes in Time Domain

b) Evolution of Modes

c) Oscillation freqs (pre-brkpt)

d) Growth Rates (pre-brkpt)

Teytelman, SLAC-R-633
Add numerically controlled swept oscillator to output
Detect in and out of phase components in input signal
Can be done for all bunches or individual single bunches
Head-Tail Modes and Feedback

Calculated and measured frequencies shifts of the 0th, 1st and \(-1st\) head-tail modes in VEPP-4M

\[\frac{\omega_B}{\omega_S} = 0.01 \]

\[\frac{\omega_B}{\omega_S} = 0.018 \]

Smaluk, Physics of Particles and Nuclei, 2012, Vol. 43, No. 2, pp. 204
Transverse Profile Monitor

• Visible light imaging is self diffraction limited due to small opening angle of SR:

\[\sigma_0 \approx 0.3 \cdot 3\sqrt{\lambda^2 \rho} \approx 30\,\mu m \quad \text{for} \quad \lambda = 400\,\text{nm}, \rho = 7.13\,\text{m} \]

• X-ray imaging can be done with pinhole camera or CRL and scintillator, a few \(\mu m \) resolution can be achieved

• Profile monitor will see any transverse instability, even longitudinal through dispersion at source point

• With two monitors at locations with different dispersion, energy spread can be calculated

• Time resolution depends on camera/detector used:
 – A few \(\mu s \) exposure time with many 1000 fps using CMOS
 – Single turn exposure time with low fps using gated intensified camera
 – Bunch-by-bunch 1D profile with fast X-ray detector array
Transverse Profiles from Pinhole

Transverse Instabilities at 5fps

Excitation and Damping at 1200fps

Examples from the X-ray pinhole camera at Diamond
Not an instability, same time scale: turn by turn imaging of injected beam at ESRF

Scheidt, IPAC2013, p1143
1D X-ray Detector Array Profiler

- Vertical array of 32 InGaAs diodes with 50µm pitch
- Illuminated by pinhole with 2.5 magnification
- Produces sub ns pulses
- Each channel digitised every 4ns
- Capable of recording bunch-by-bunch profile with about 10µm RMS beam size resolution

Rider, IBIC2012,p585
Streak Camera

• Takes visible light as input
• Photo cathode converts this into low energy electron bunches (a few keV)
• These are then deflected electrostatically in two axes:
 – Fast deflection often synchronous with RF giving around 1ps temporal resolution
 – Slow deflection (ns-ms time scales) to see temporal evolution
• Deflected electrons are imaged using phosphor screen and gated intensified camera
• Can be used to record only longitudinal profile/phase or also to record transverse position on ps timescales (within limits of visible light imaging...).
Streak Camera Examples

Vertical head tail motion

Transverse Coupled bunch motion

Longitudinal Coupled bunch motion

Longitudinal profile variation during CSR bursts

- Time [ps]
- Scheidt, EPAC2000, p182

- Time [ns]
- Yang, BIW1998, p229

- Time [us] + transverse

- Time [ns]

- Time [ps]
- Diamond

- Time [ns]
- Scheidt, EPAC2000, p182
Streak Camera Limitations

- Manufacturer specs are typically 0.5-2ps resolution
- Dispersion in the transport of the ‘white’ SR light can lead to poorer resolution:
 - Filter narrow band (but have fewer photons!)
 - Have dispersion free (reflective only) transport optics
- Space charge effects in the streak tube lead to enlarged beam (poorer resolution)
 - Operate with low flux, stack many sweeps
 - Single bunch, single turn imaging not possible with ultimate resolution!
- Phase noise on RF reference / trigger or synchrotron oscillations on beam lead to poorer resolution when stacking many sweeps.
• Bursts of mm-wave emissions (many 10GHz to some 100GHz) can be observed as a result of coherent emissions from longitudinal density modulations of a single bunch

• These bursts are many orders of magnitude stronger than the incoherent background in a typical light source

• A variety of detectors can be used: Golay Cells, Pyrodetectors, Bolometers, Hot Electron Bolometers, Schottky diodes (more about this in talk by J Barros, and the whole next session)
Bursting from single bunch in the 60-90GHz band measured using Schottky diode detector

Shields, JoP Conf Series 357 (2012) 012037
An interferometer can be used to measure the average power spectrum.

Shields, IBIC2013, p143
<table>
<thead>
<tr>
<th>Source</th>
<th>Instrument</th>
<th>Single Bunch</th>
<th>Coupled Bunch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>longitudinal</td>
<td>transverse</td>
</tr>
<tr>
<td>BPM pickup</td>
<td>Spectrum Analyser</td>
<td>Maybe (if bandwidth sufficient)</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>Oscilloscope</td>
<td>Maybe (if bandwidth sufficient)</td>
<td>YES</td>
</tr>
<tr>
<td>Bunch-by-Bunch FB</td>
<td>NO</td>
<td>Maybe</td>
<td>YES</td>
</tr>
<tr>
<td>Synchrotron Radiation Port</td>
<td>Transverse Profile</td>
<td>Indirect through dispersion</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>Streak Camera</td>
<td>Maybe (if resolution sufficient)</td>
<td>YES</td>
</tr>
<tr>
<td>mm-wave detector</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>
Potential Future Developments

• Transverse imaging capable of resolving both small transverse profile and bunch by bunch (or at least turn by turn). Maybe X-ray pinhole and
 – gated intensified camera
 – fast line camera or X-ray detector
 – X-ray streak camera
• Turn-by-turn spectrometer for mm-wave bursts
• Streak cameras with better resolution, especially in single shot
• Digital Feedback inside bunch? Yes for Hadrons, probably not for the bunch lengths in lepton machines...