

Nobel Symposium - Higgs Boson

ICHEP Melbourne July 4, 2012

October 13 2013

ICHEP Melbourne July 4, 2012

October 13 2013

Nobel Symposium - Higgs Boson

ATLAS July4 2012 (CERN)

Following CMS & ATLAS presentations

lobal Implications for the future

Rolf-Dieter Heuer CERN DG

Fabiola Gianotti -ATLAS

Englert and Higgs

October 13 2013

Nobel Symposium - Higgs Boson

How we got there....

1982: Snowmass – first discussions of the SSC (US) 1983: HEPAP recommends US SSC project - endorsed (40 TeV CM)

- Ronald Reagan "throw deep"

- 1984 First studies for high-energy pp collider in the 27 km LEP tunnel
- 1989 : Start of SLC and LEP e+e- colliders
- 1990: I go to SSC for 1 year that becomes 3 years
- 1993 : SSC is cancelled \otimes US physicists join the LHC
- $1994 \div LHC$ approved by the CERN Council
- 1995 : Top-quark discovered at the Tevatron
- 1996 : Construction of LHC machine and experiments begin design/fab
- 2000: LEP2 shut down
- 2003 : Begin installation of LHC machine and experiments
- 2009 : November: 23, first LHC collisions ($\sqrt{s} = 900$ GeV CM energy)
- 2010: First collisions at $\sqrt{s} = 7$ TeV
- 2012: ATLAS and CMS discover a new boson H $\rightarrow \gamma\gamma$ and 4leptons with mass 125 GeV
- 2012/13 : Boson confirmed to be Higgs Boson
- 2013: LHC shutdown for upgrade to 14 TeV CM (7 TeV per beam)
- 2013: François Englert and Peter Higgs awarded Noble Prize
- 2015: LHC program to restart at 14 TeV CM energy MORE TO COME $% \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A} = \mathcal{A}$

October 13 2013

Discovery modes

<u>Higgs</u> $\rightarrow \gamma \gamma$ $\sigma \times BR \sim 50 \text{ fb, m}_{H} \sim 126 \text{ GeV}$

□ Simple topology: two high- p_T isolated photons E_T (γ_1 , γ_2) > 40, 30 GeV

Δ Main background: γγ continuum (irreducible)

□ Background smooth but HUGE \rightarrow small S/B ratio (~ 3%)

 $\Box \quad \text{Need excellent } \gamma\gamma \text{ mass resolution}$

Electromagnetic calorimeter performance crucial to observe narrow signal peak above background

ATLAS after applying all selection criteria expects ($m_H \sim 126 \text{ GeV}$):

~ 500 signal events & ~ 18000 background events in mass window

$\underline{\text{Higgs}} \rightarrow ZZ^* \rightarrow 4I \ (4e, 4\mu, 2e2\mu)$

- Small cross-section
- mass can be reconstructed
- Small background \rightarrow large S/B ratio ~ 1.5
- Irreducible background from $ZZ^{(*)} \rightarrow 4I$

 $\sigma \times BR \sim 2.5$ fb, m_H ~ 126 GeV GeV

Nobel Symposium - Higgs Boson

Nobel Symposium - Higgs Boson

Nobel Symposium - Higgs Boson

Peter Higgs in the ATLAS cavern

October 13 2013

François Englert in the ATLAS cavern

October 13 2013

The Large Hadron Collider-LHC

The LHC

- Circumference 27 km
- Up to 175 m underground
- Total number of magnets 9 553
- Number of dipoles 1 232
- Operation temperature 1.9 K (Superfluid He)

October 13 2013

High Luminosity allows us to search for rare phenomenon - small cross section , BUT....

Challenges of High Luminosity

October 13 2013

Nobel Symposium - Higgs Boson

Big thanks to theory community for NLO/NNLO cross-section and background calculations Most sensitive channels ($120 < m_H < 130 \text{ GeV}$) $H \rightarrow ZZ^* \rightarrow 4I, H \rightarrow \gamma\gamma \text{ discovery mode (7/4/12)}$ $H \rightarrow vvW^* \rightarrow Iv Iv (2013), H \rightarrow \tau\tau$ $W/ZH \rightarrow W/Z \text{ bb (coming soon)}$ Complex analyses: rates very small, Signal/Background is small, and final states complex

Large detectors needed to measure and absorb high-E particles from LHC collisions

Higgs Boson Discovery (2012) relied heavily on the electromagnetic calorimeter and the muon detectors in both CMS and ATLAS to detect $H \rightarrow \gamma\gamma$ and $H \rightarrow 4$ leptons(4 μ , 2 μ 2e, 4e)

- Cathode Strip Chambers
- Trigger Chambers
- Thin Gap Chambers
- Resistive Plate Chambers

ATLAS and CMS Comparison

Subsystem	ATLAS	CMS		
Overview	fg 46 m	En 22 m		
Magnet System	Solenoid 2T - Calorimeters outside Three air-core toroids	Solenoid 3.8T Calorimeters inside		
Inner Tracker	Pixels/Si-strip/TRT - Part ID dE/dx σ _{pT} /p _T ~ 5X10 ⁻⁴ p _T ⊕ 0.01	Pixel & Si strips - Part. ID dE/dx σ _{pT} /p _T ~ 1.5X10 ⁻⁴ p _T ⊕ 0.005		
EM CAL	Pb-LAr Sampl. – longitudinal seg. σ _E /E ~ 10%/√E ⊕ 0.007	Pb Tungstate Cryst. – no long. seg. σ _E /E ~ 3%/√E ⊕ 0.5%		
HCAL	Fe-Scint & Cu-LAr fwd ≥ 11λ₀ σ _E /E ~ 50%/√E ⊕ 0.03	Brass-Scint. ≥ 11λ₀ tail catcher σ _E /E ~ 100%/√E ⊕ 0.05		
Muon Spectrometer ATLAS to $\eta = 2.7$ CMS to $\eta = 2.4$	Air Core – drift tubes (stand alone) σ _{pT} /p _T ~ 4% (at 50 GeV) ~ 11% (at 1 TeV)	Instrumented Fe return σ _{pT} /p _T ~ 1% (at 50 GeV) ~ 10% (at 1 TeV)		

ATLAS and CMS Comparison

Subsystem	ATLAS	CMS		
Overview	Eg 6 m	E 22 m		
Magnet System	Solenoid 2T - Calorimeters outside Three air-core toroids	Solenoid 3.8T Calorimeters inside		
Inner Tracker	Pixels/Si-strip/TRT - Part ID dE/dx σ _{pT} /p _T ~ 5X10 ⁻⁴ p _T ⊕ 0.01	Pixel & Si strips - Part. ID dE/dx σ _{pT} /p _T ~ 1.5X10 ⁻⁴ p _T ⊕ 0.005		
EM CAL	Pb-LAr Sampl. – longitudinal seg. σ _E /E ~ 10%/√E ⊕ 0.007	Pb Tungstate Cryst. – no long. seg. ▼ _E /E ~ 3%/√E ⊕ 0.5%		
HCAL	Fe-Scint & Cu-LAr fwd $\geq 11\lambda_0$ $\sigma_{\rm E}/{\rm E} \sim 50\%/{\rm JE} \oplus 0.03$	Brass-Scint. ≥ 11λ₀ tail catcher σ _E /E ~ 100%/√E ⊕ 0.05		
Muon Spectrometer ATLAS to $\eta = 2.7$ CMS to $\eta = 2.4$	Air Core - drift tubes (stand alone) σ _{pT} /p _T ~ 4% (at 50 GeV) ~ 11% (at 1 TeV)	Instrumented Fe return σ _{pT} /p _T ~ 1% (at 50 GeV) ~ 10% (at 1 TeV)		

Features of Atlas Calorímeter

- Electromagnetic Calorimeter longitudinally segmented
- Used to improve γγ mass resolution
- Used to separate single γ from $\pi^0 \rightarrow \gamma \gamma$
- Low-energy hadronic jets with 50 to 100 GeV deposit most of the energy in the EM calorimeter-material in ID plus ECAL
- This feature used by ATLAS to search for longlived particles that decay to hadron jets in HCAL.

<u>EM Calorímeter</u>

- Photon ID based on longitudinal and lateral segmentation of the ECAL (shower shapes)
- High granularity in SI results in good rejection efficiency for $\pi^0 \rightarrow \gamma \gamma$
- Photon direction from shower centroids in layers 1 & 2 gives longitudinal (z) position
- For two γ (cf. $H \rightarrow \gamma \gamma$) combine to improve z resolution of vertex
- Get γ direction in layers
 I & 2 for each γ find longitudinal position, z, of primary vertex (IP).
- Vertex with pointing ~1.6-1.8 cm in z, without the longitudinal spread of IP is 5.6 cm

Nobel Symposium - Higgs Boson

$H \rightarrow 4 leptons$

41 mass spectrum after all selections; for full 2012 data sample

In the region	In the region $125 \pm 5 \text{ GeV}$						
Observed	32 events						
Expected from back	11.3 ± 1.4						
Expected from Higg	16 ± 1.9						
	4μ	2ei	2μ	4e			
Data	13	13		6			
Expected S/B	1.9	1.3		1.1			

Muon momentum scale known to $\sim 0.2\%$

- \Box Clear peak at m_H ~ 124.5 GeV
- Probability it comes from background fluctuation: ~ 10⁻¹⁰ → 6.6 σ signal significance
 (4.4 σ expected from SM H)

Combination of All Channels

Assuming a single narrow resonance at a mass $m_{\chi} \sim 125 \; GeV/c^2$

OUR Contributions to Muon System

- Designed for all of ATLAS muon chambers the basic support structures for muon chambers (Colin Daly ME faculty, Bill Kuykendall,(ME), Dick Davisson, Tianchi Zhou, me
 - How to support muon drift tubes to define a chamber
 - Kinematic mounts
 - Built all of these items for the ATLAS muon chambers built in US
- Defined drift tube assembly line used by all of the US ATLAS muon chamber builders
- Fabricated 32,000 muon drift tubes and QA each one (lots of UG help)
 - The 32,000 tubes used for assembling 82 ATLAs forward muon chambers (1/3 of US production)
- Chamber assembly (Paul Mockett, Dave Forbush ME)
 - Assembly on large, flat Granit slab
 - To install slab required cutting large opening in load-bearing wall of lab currently occupied by muon g-2 group (NB PAB did not collapse ^(C))
- Optical alignment system for endcap MDT chambers (Joe Rothberg)
 - Controls/archiving software and the lower level Linux code.
 - developed software to retrieve data from the database for monitoring and for use by the global endcaps alignment software.
 - Major architectural changes to the alignment readout and data storage procedure fro 2015 run in progress

ATLAS Muon UW Contributions

Tube Assembly room – Bill Kuykendall at work

Quality control Dick Davisson

Completed endcap chamber

Mounting Chambers for installation at CERN

October 13 2013

<u>UW contributions</u>

• Determination of ZZ \rightarrow 4l background to H \rightarrow ZZ* \rightarrow 4l <u>Shih-Chieh Hsu</u>led ATLAS effort

Main Background $Signal (m_v=125 \text{ GeV})$ $Signal (m_v=125 \text{ GeV})$ $Signal (m_v$

Central contributions to identifying a bottom quark jet, Gordon Watts

- Detecton of H → bb necessary understand relative coupling to bottom quark. - requires identifying a bottom quark jet.
- Efficiencies to detect a b typically 70% and fake rates about 1%
- Systematic uncertainties on b-tagging are largest contributing error to the analysis

• Central contributions to $H \rightarrow t$ t measurements, Anna Goussiou

- Detection of $H \rightarrow \tau \tau$ necessary understand relative couplings
- Requires identifying a tau decays.
- H → ττ very sensitive to beyond standard model searches (MSSM).

<u>Higgs sensitive to exotica</u>

SM 125 GeVhiggs width small and decays relatively

Total decay width of the SM Higgs boson

rare $\frac{\Gamma_{h}/m_{h} \approx 2-3 \times 10^{-5}}{Whereas}$ $\frac{\Gamma_{Z}/m_{Z} \approx 3 \times 10^{-2}, \Gamma_{W}/m_{W} \approx 3 \times 10^{-2}}{\Gamma_{t}/m_{t} \approx 3 \times 10^{-3}}$ 125 GeV Higgs candidate for coupling to 'hidden sectors'

Can result in long-lived particles ???

EPE group pioneered search for long-lived particles in ATLAS (Henry Lubatti and Gordon Watts)

BACKUP SLIDES

October 13 2013

Nobel Symposium - Higgs Boson

<u>Calorímeters</u>

25m -

- Electromagnetic Calorimeter (ECAL)
 - Lead accordion with liquid argon -uniform
 - Three longitudinal segment
- Hadronic Calorimeter (HCAL
 - Barrel Fe Scintillator plates with polystyrene
 - Forward Cu/Liquid Ar
- Barrel Dimensions
 - ECAL 1.1m < r < 2.25m
 - HCAL 2.25m < r < 4.25m

October 13 2013

EM Calorímeter

ATLAS Inner Detector (ID)

- Transition Radiation Tracker (tracking and e/p separation)
 - 73 barrel straw layers and 2x160 end-cap radial layers
 - + $|\eta|$ < 2.0 with $\sigma_{r\phi}$ ~ 130 μm (350k channels)
 - Average of 32 hits/track
- The ID is inside a 2 Tesla solenoidal magnetic field

44m

<u>Muon Spectrometer MDT Chambers</u>

- MDT Chamber has two multilayers with three or four layers of drift tubes
 82 chambers built in our physics department
- Tubes 30 mm diameter, 0.4 mm wall thickness operate ArCO₂ at 3 bar absolute - 32,000 built in our physics department
- Multilayer separation can be up to 32 cm.

October |3 20|3

Triggers

Nobel Symposium - Higgs Boson

Triggers

Level 1

- Corse CAL & Muon
 Spectrometer granularity
 and <u>no ID tracking</u>
- Identifies Regions of
 Interest (RoI) for further
 processing at Level 2
- Level 2
 - The full detector granularity in RoI region
 - Full tracking in RoI and all tracks required to connect to the Interaction Point
 - Only one muon per RoI is reconstructed

Reconstruction of Isolated photons

π^0 - γ Rejection

<u>Muon Spectrometer</u>

 Air core toroidal magnetic field allows – stand-alone momentum measurements

Trigger Chambers

- RPC's in barrel region
 |η|<2.4 andTGC's in Forward
 region 2.0 < |η|< 2.7

- Trigger chambers provide second coordinate (φ) for track reconstruction

Precision Chambers

- Monitored Drift Tube (MDT) chambers in barrel and most of forward spectrometer
 - Barrel MDTs ~ 4.5, 7 and 10 m
 - Forward MDTs ~ 7.5 and 14 m
- MDT chamber has two multilayers (ML) with 3 or 4 layers of MDT tubes
- Multilayers separated: up to 32 cm

Cathode Strip Chambers (CSC's) for $2.0 < \eta < 2.7$

• Resolution $\sigma_{pT}/p_T \sim 4\%$ at 50 GeV $\sim 11\%$ at 1 TeV

October 13 2013

Nobel Symposium - Higgs Boson

<u>Muon Spectrometer</u>

Cross-section of the barrel MS (non-bending plane), showing the three concentric cylindrical layers of eight large and eight small chambers. OD is about 20 m

Cross-section MS in bend plane showing the three muon stations.

Muon Levell Trigger

- based on three trigger stations
- The algorithm requires a coincidence of hits in the different trigger stations
- Defines a road: tracks the path of a muon from the interaction point through the detector.
- Width of the road depends on the p_T threshold.

Back-up Slídes

