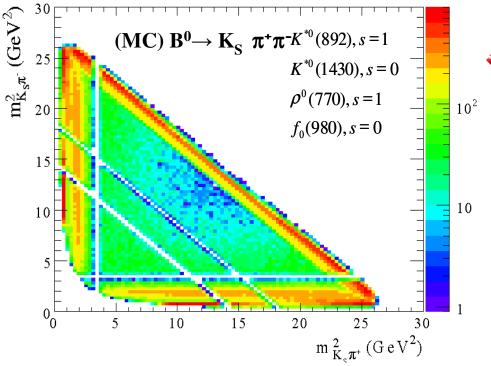


Time dependent Dalitz Plot analysis of $B^0 \rightarrow K_S \pi^* \pi^-$

Jelena Ilic

University of Warwick

IoP, Lancaster, 31 March 2008


- 3 body decays Dalitz plot
- Motivation
- Backgrounds
- Self Cross Feed
- Results
- Conclusion

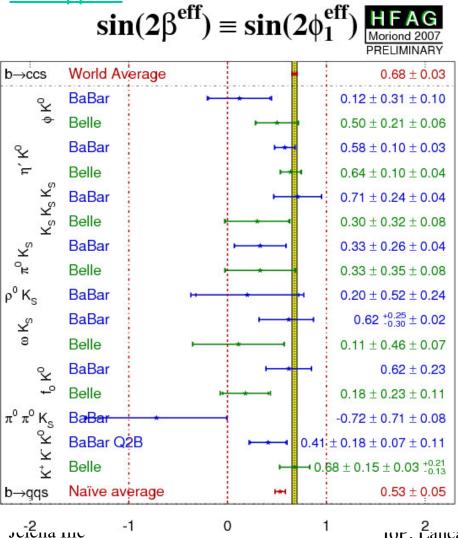
3 body decays - Dalitz Plot

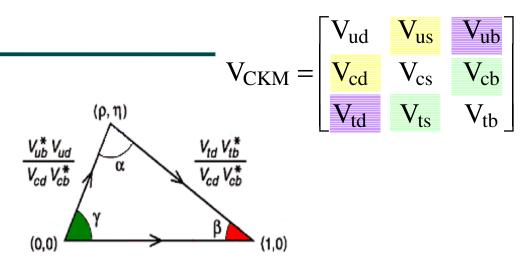
total	2
free rotation	-3
meson masses	-3
conservation laws	-4
4 vectors	12

•Usual choice : $m_{12}^2 m_{23}^2$ or m_{13}^2 invariant mass of combined ij particle •Decay rate: $\Gamma \propto \left| M \right|^2 dm_{12}^2 dm_{23}^2 \quad (M - invariant amplitude)$

Dalitz plot - visualisation of the 3 body phase space

Interfering Q2B modes

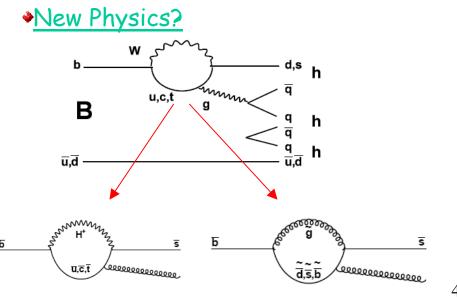

- DP analysis is sensitive to their relative phases
- This allows to measure $2\beta_{eff}$ in penguin dominated modes rather than just S or $sin(2\beta_{eff})$.
- \bullet Interfering tree and penguin diagrams~information on CKM angle γ


Motivation

Study CP violation effects

Standard Model ~ CKM matrix ~ couples the quarks with the weak force carriers

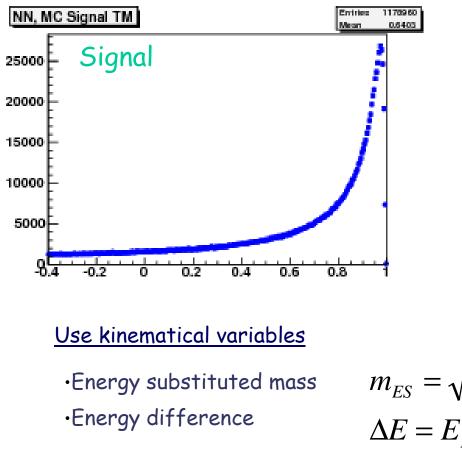
•<u>measurement of the angle β in</u> b \rightarrow sggbar

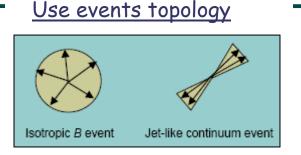


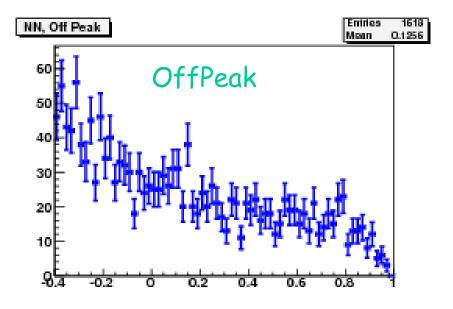
<u>Constraint on the angle γ</u>

M. Ciuchini, M.Perini and L.Silvestrini, Phys.Rev. D **74** (2006) 051301

M. Gronau, D. Pirjol, A. Soni and J. Zupan, Phys.Rev. D 75 (2007) 014002


IOF, Lancaster, 31 March 2008

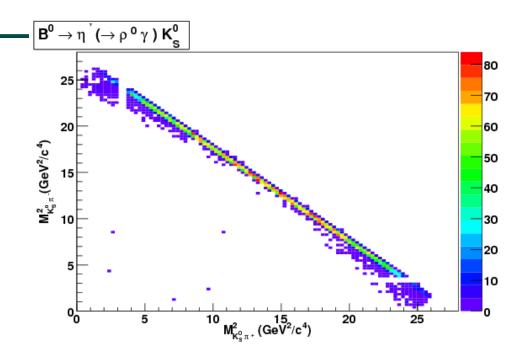

Background


Continuum

 $e^+e^- \rightarrow qqbar (q=light quark)$ Dominant background

Combine topological variables to form a NN

$$\begin{split} m_{ES} &= \sqrt{E_x^2 - \vec{p}_B^2} \\ \Delta E &= E_B - E_x \qquad E_x = \frac{1}{2}\sqrt{s} \qquad \begin{array}{l} \text{Sqrt(s) - Invariant} \\ \text{mass of } e^+e^- \text{ system} \end{array} \end{split}$$

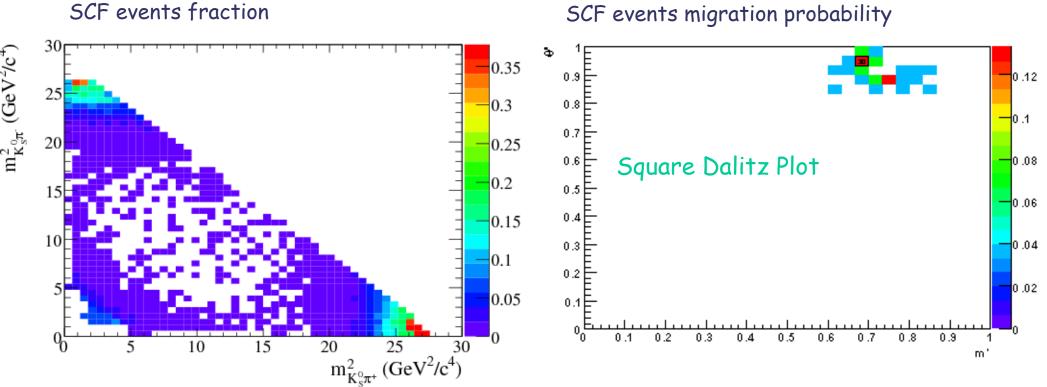

Jelena Ilic

IoP, Lancaster, 31 March 2008

Background

◆BBbar

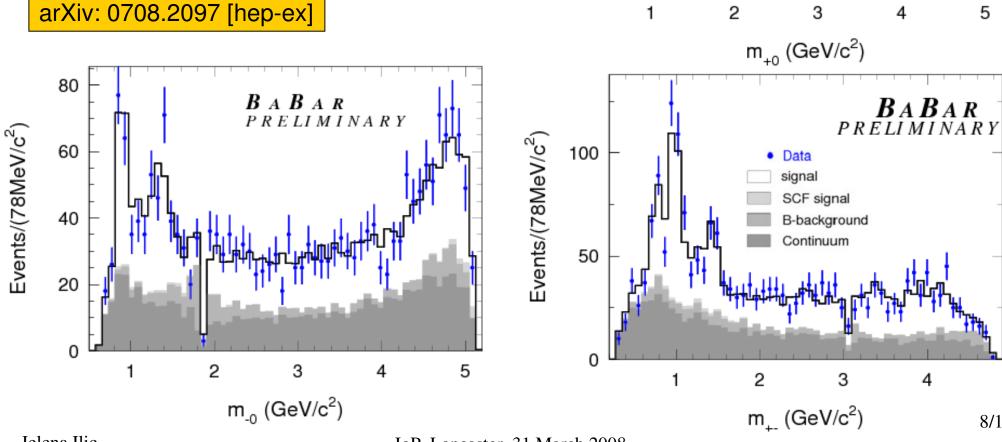
- B decay events
- Final state is not a product of charmless B meson decay to K_sπ⁺π⁻
- Study using both generic and exclusive MC samples
- find dominant decay modes (peaking background)
- combinatorial background



Mode	Number of events	ΔE vs. m _{ES} - η'K ^o _S MC
$B^0 \to D^- (\to K^0_S \pi^-) \pi^+$	3377 ± 60	0.3
$B^0 \rightarrow J/\psi (\rightarrow l^+ l^-) K_S^0$	1803 ± 43	₩0.25
$B^0 \rightarrow \psi(2S) K_S^0$	142 ± 13	0.2
$B^0 o \eta' K^0_S$	37 ± 16	0.15
$B^0 \rightarrow a_1^{\pm} \pi^{\mp}$	7.3 ± 0.7	0.1
$B^0 \to D^{*-} (\to D\pi)\pi^+$	43.8 ± 2.5	0.05
$B^0 \rightarrow D^- h^+$; $B^0 \rightarrow D^- \mu^+ \nu_\mu$	281 ± 20	
$B^0 \to D^{*-} \rho^+$	34.5 ± 4.6	
$B^0 \to \{\text{neutral generic decays}\}$	114 ± 7	-0.05
$B^+ \to \{\text{charged generic decays}\}$	282 ± 11	-0.1 [[]
		m _{es} (dev/c)

Self Cross Feed

Misreconstructed signal events (one or more particles actually from decay of other B in event) ~1%


$$d_{\text{migration}} = \sqrt{\left(m_{13_{MC}}^2 - m_{13_{\text{reco}}}^2\right)^2 + \left(m_{23_{MC}}^2 - m_{23_{\text{reco}}}^2\right)^2}$$

SCF events migration probability

Results

- (383 ± 3)10⁶ BBbar decays
 - 22525 candidates
 - $B \rightarrow K_s \pi^+ \pi^-$ signal yield: 2172±70 ٠

80

60

40

20

0

1

Events/(78MeV/c²)

B A **B** A R P R E LI M I N A R Y

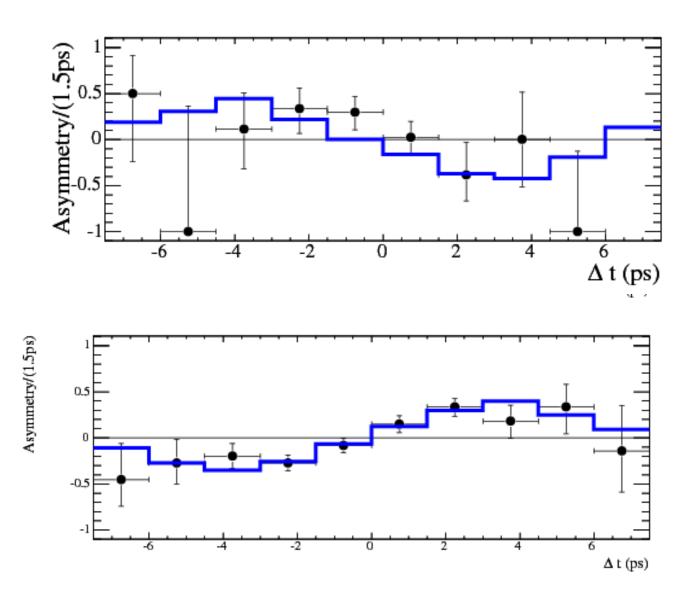
4

Jelena Ilic

IoP, Lancaster, 31 March 2008

Resonances' relative magnitudes and phases

arXiv: 0708.2097 [hep-ex]


Resonance Name	$ c_{\sigma} $	$\phi[\text{degrees}]$	$ \overline{c}_{\sigma} \ (\overline{c}_{\overline{\sigma}})$	$\overline{\phi}$ [degrees]
$f_0(980)K_S^0$	4.0	0.0	2.8 ± 0.7	-88.6 ± 21.3
$ ho^0(770)K_S^0$	0.10 ± 0.02	58.6 ± 16.4	0.09 ± 0.02	21.3 ± 21.2
$f_0(1300)K_S^0$	1.9 ± 0.4	117.6 ± 22.6	1.1 ± 0.3	-15.2 ± 23.8
Nonresonant	3.0 ± 0.6	13.8 ± 14.3	3.7 ± 0.5	-16.2 ± 17.3
$K^{*+}(892)\pi^{-}$	0.136 ± 0.021	-60.7 ± 18.5	0.113 ± 0.018	102.6 ± 22.9
$K^{*+}(1430)\pi^{-}$	4.9 ± 0.7	-82.4 ± 16.8	7.1 ± 0.9	79.2 ± 20.5
$f_2(1270)K_S^0$	0.011 ± 0.004	62.9 ± 23.3	0.010 ± 0.003	-73.9 ± 27.8
$\chi_{c0}(1P)K_S^0$	0.34 ± 0.15	68.7 ± 31.1	0.40 ± 0.11	154.5 ± 28.6

Mixing phase, direct and mixing-induced CP asymmetries

Resonances	$2\beta_{eff}$ (degrees)	С	5
f ₀ (980)K ⁰ ₅	$89^{+22}_{-20} \pm 5 \pm 8$	$0.35\pm0.27\pm0.07\pm0.04$	-0.94 ^{+0.07+0.05} -0.02-0.03 ± 0.02
ρ ⁰ (770)K ⁰ _S	$37^{+19}_{-17} \pm 5 \pm 6$	$0.02 \pm 0.27 \pm 0.08 \pm 0.06$	$0.61 {}^{+0.22}_{-0.24} \pm 0.09 \pm 0.08$
Κ*(892)π		$-0.18 \pm 0.10 \pm 0.03 \pm 0.03$	

Results

◆∆t asymmetry

• ρ⁰(770)K⁰_S region

f₀(980)K⁰₅ region

Conclusion

- First Time Dependent Dalitz plot analysis of $B{\rightarrow}K_{S}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ decays
- Allows measurement of $2\beta_{eff}$ for $f_0(980)K_s$ and $\rho(770)K_s$
- Improved statistical accuracy
- Direct CP asymmetries ~ consistent with 0
- Time dependent asymmetries coefficients S measured
 - $S(f_0(980))$ compatible with previous BaBar measurament; It is above b \rightarrow ccs expectation in contrast to most b \rightarrow qqs analysis
 - $S(\rho^{0}(770))$ consistent with charmonium measurament of sin(2 β)
 - Small errors a natural consequence of DP analysis with central value of S close to physical boundary
- Relative phases and magnitudes for different resonances measured
- Measurements of relative phases of $K^{\star}\pi$ allow constraint on gamma using CPS/GPSZ theoretical method