Angular Measurements in B - K*II

Jennifer Watson
IOP Meeting, $31^{\text {st }}$ March

On behalf of the Babar Collaboration

Outline

- Theoretical Motivation
- Measurements - Lepton Angular Asymmetry
- Branching Fraction
- Direct CP Asymmetry (A_{CP})
- Lepton Flavor Asymmetry (LFA)
- CP-averaged Isospin Asymmetry (A_{I})
- Analysis outline
- Results
- Conclusions and Future Work

Physics Motivation

$\rightarrow B \rightarrow K^{\left({ }^{(}\right)} \|$where II are charged lepton pairs $\mathrm{e}^{+} \mathrm{e}^{-}$or $\mu^{+} \mu^{-}$
*This is a flavour changing neutral current decay - do not occur at tree level in the standard model

Photon penguin $\left(C_{7}\right)$

Axial-vector EW (C_{10}) Vector EW (Cg)

* These are rare processes: Branching Fraction ~10-6
- Possible New Physics diagrams:

Physics Motivation

- C's can be affected by new physics; enters at same order as Standard Model (SM)

$$
\frac{d A_{F B}}{d s} \propto-\underbrace{C_{10}\left\{\operatorname{Re}\left(C_{9}^{\text {eff }}\right) V A_{1}\right.}_{\text {Large } \mathbf{s}}+\frac{m_{b} m_{B}}{S} C_{7}^{\text {eff }}\left[V T_{2}\left(1-\frac{m_{\kappa^{*}}}{m_{B}}\right)+A_{1} T_{1}\left(1+\frac{m_{K^{*}}}{m_{B}}\right)\right]\}
$$

- T,V and A are hadronic form factors

K*II Lepton Angular Asymmetry

$\rightarrow \vartheta_{1}$ - lepton angle in di-lepton rest frame. Forward-backward asymmetry $\left(\mathrm{A}_{\mathrm{FB}}\right)$
$\rightarrow \vartheta_{\mathrm{k}^{*}}$ - kaon angle in the K^{*} rest frame:
K^{*} polarisation $\left(\mathrm{F}_{\mathrm{L}}\right)$
$\rightarrow \phi$ - angle between K^{*} and di-lepton decay planes

Predictions for Different $\mathbf{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{10}$

$$
\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{l}}=\frac{3}{4} F_{L}\left(1-\cos ^{2} \theta_{l}\right)+\frac{3}{8}\left(1-F_{L}\right)\left(1+\cos ^{2} \theta_{l}\right)+A_{F B} \cos \theta_{l}
$$

SM
$C 7=-C 7(S M)$
C9C10 $=-$ C9C10(SM)
C7 $=-C 7(S M)$,
$C 9 C 10=-C 9 C 10(S M)$

Rate Asymmetries

- Direct CP asymmetry, A_{CP} :

$$
A_{C P}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} l^{+} l^{-}\right)-\Gamma\left(B \rightarrow K^{(*)} l^{+} l^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} l^{+} l^{-}\right)+\Gamma\left(B \rightarrow K^{(*)} l^{+} l^{-}\right)}
$$

- Lepton flavour asymmetry ratios:

$$
\begin{aligned}
R_{K} & =\boldsymbol{B}\left(B \rightarrow K \mu^{+} \mu^{-}\right) / \boldsymbol{B}\left(B \rightarrow K e^{+} e^{-}\right) \\
R_{K}^{*} & =\boldsymbol{B}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right) / \boldsymbol{B}\left(B \rightarrow K^{*} e^{+} e^{-}\right)
\end{aligned}
$$

- CP-averaged Isospin Asymmetry A_{1} :

$$
d A_{I}=\frac{d \Gamma\left(B^{0} \rightarrow K^{(* 0)} l^{+} l^{-}\right) / d s-d \Gamma\left(B^{ \pm} \rightarrow K^{(* \pm)} l^{+} l^{-}\right) / d s}{d \Gamma\left(B^{0} \rightarrow K^{(* 0)} l^{+} l^{-}\right) / d s+d \Gamma\left(B^{ \pm} \rightarrow K^{(* \pm)} l^{+} l^{-}\right) / d s}
$$

Previous Results

Branching Fraction

Babar and Belle both measure consistent values for $K^{*} l l$ and KII $\mathrm{A}_{\text {FB }}$

Belle branching fraction (BF) is $2 x$ Babar, CDF

Belle 05, 357/fb K*II AFB

Analysis Details

- More data - Almost twice as much as previous analysis
- More modes - Reconstruct 4 K*ll modes and 2 KII modes

$$
\begin{array}{ll}
\text { B->K }{ }^{*} \mid l \text { modes: } & B^{0} \rightarrow K^{+} \pi^{0} e^{+} e^{-} \quad \text { NEW } \\
& B^{+} \rightarrow K_{s} \pi^{+} e^{+} e^{-} \\
& B^{0} \rightarrow K^{+} \pi^{-} \mu^{+} \mu^{-} \\
& B^{0} \rightarrow K^{+} \pi^{-} e^{+} e^{-}
\end{array}
$$

- Better detector - Improved muon identification
- Mass regions - Low $\mathrm{q}^{2}<6.25 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
- High $q^{2}>10.24 \mathrm{GeV}^{2} / \mathrm{c}^{4}$

Backgrounds

- Sideband region in $\mathrm{m}_{\text {ES }}$ (beam constrained mass) is used to find the angular distribution of the backgrounds: $5.20<\mathrm{m}_{\mathrm{ES}}<5.27$
- Combinatoric
- Peaking - Charmonium: $B \rightarrow K^{*} J / P s i\left(\rightarrow l^{+} l^{-}\right)$
- Hadronic: $\quad B \rightarrow \pi D(\rightarrow \pi \pi$ or $K \pi)$
- Photon Conversions: $B \rightarrow K^{*} \gamma\left(\gamma \rightarrow e^{+} e^{-}\right)$

Fit Strategy

* Combine the datasets for the $K^{*} l l$ modes in each of the q^{2} bins and fit
- Multidimensional fit in $\mathrm{m}_{\mathrm{ES}}, \cos \vartheta_{\mathrm{k}^{\prime}} \cos \vartheta_{\mathrm{I}}$
* signal, combinatoric and peaking background components modeled in the fit
* Fit m_{ES} to extract the signal yield
* Fit $\cos \vartheta_{k}$ with $m_{E S}$ constant to extract F_{L}
* Fit $\cos \vartheta_{1}$ with $m_{E S}, F_{L}$ constant to extract $A_{F B}$
*Fit KII data, $A_{F B}$ is zero - validation

Validation - Charmonium

Motivation

- Decays into the same final state
* BF is $1000 x$ larger than K^{*} II
- Removed by $2.5<\mathrm{m}_{\|}<3.2 \mathrm{GeV} / \mathrm{c}^{2}$ and $3.6<\mathrm{m}_{\|}<3.75 \mathrm{GeV} / \mathrm{c}^{2}$
- Results consistent with recent results:

$$
\begin{aligned}
& \Rightarrow F_{L}=0.56 \pm 0.01 \\
& \Rightarrow A_{F B}=0
\end{aligned}
$$

Preliminary K*II Angular Fits

Low q^{2} region
F_{L}

High q^{2} region

Preliminary Results for F_{L} and A_{FB}

K^{*} Polarization

Forward-backward Asymmetry

F_{L}

$$
\begin{array}{llc}
\text { LOW q }{ }^{2}: & 0.35 \pm 0.016 \pm 0.04 & +0.24_{-0.23}^{+0.18} \pm 0.06 \\
& & +0.76_{-0.32}^{+0.52} \pm 0.07
\end{array}
$$

$\mathrm{C} 7=-\mathrm{C7}$ (SM)
C9C10 $=-\mathrm{C9C10}(\mathrm{SM})$
C7 $=-\mathrm{C7}(\mathrm{SM})$,
C9C10 $=-\mathrm{C} 9 \mathrm{C} 10(\mathrm{SM})$

Conclusions and Future Work

- Results for F_{L} and $A_{F B}$ are consistent with the $S M$
- Result for the Branching Fraction and Rate Asymmetries will be published soon
- Up-date of the angular analysis is in progress
- Will include a measurement of the decay plane angle (ϕ)
- Final analysis over Babar's entire dataset

Backup Slides

Belle
AFB (B->K*II) $=0.50+/-0.15+/-0.02$ AFB $(B->K I I)=0.10+/-0.14+/-0.01$

Direct CP Asymmetry

$$
\begin{gathered}
A_{C P}\left(B^{+} \rightarrow K^{+} l^{+} l^{-}\right)=-0.07 \pm 0.22 \pm 0.02 \\
A_{C P}\left(B \rightarrow K^{*} l^{+} l^{-}\right)=+0.03 \pm 0.23 \pm 0.03
\end{gathered}
$$

Babar and Belle both measure consistent values for K^{} II and KII AFB

BF Fit Results

- Data fits
- Table of results

Previous Babar Results

Babar 06, 210/fb K*II F
Babar 06, 210/fb K*II A FB

* K^{*} polarisation consistent with SM
*Low q 2 lower limit excludes SM at 98\% CL (2.5б)

$$
\begin{aligned}
& \text { AFB >0.19 (95\% CL) } \\
& \text { AFB }(\mathrm{SM})=0.03
\end{aligned}
$$

${ }^{*}$ At high q^{2}, wrong-sign $\mathrm{C}_{9} \mathrm{C}_{10}$ is excluded at $>3 \sigma$

$$
\text { AFB }=0.72+0.28-0.26+/-0.08
$$

Interpretation of Rate Results

Validation - Charmonium

Fit to mES for Charmonium: $B^{0} u K^{u} u^{u} u^{u} u^{u}$

A RooPlot of "mES"

*Fit to the dataset - good agreement
*BF $=1.38210^{23} 23.16210^{25}$
*BF for all modes agree with PDG within a few \%

Validation - Charmonium

hep-ex/0607081
${ }_{*}$ Fit to F_{L} are consistent with recent Babar result: $5.62210^{21} 21210^{22} 21.4210^{22}$

Fit to $A_{F B}$ for charmonium dataset A RooPlot of "lepHel"

20

Fit to $F_{\text {b }}$ for charmonium dataset
A RooPlot of "kHel"

${ }^{*} A_{F B}$ is zero for charmonium
${ }^{*}$ Consistent with null A_{FB}

BaBar Detector

