Angular Measurements in B→K^{*}II

Jennifer Watson IOP Meeting, 31st March

On behalf of the Babar Collaboration

Outline

- Theoretical Motivation
- Measurements Lepton Angular Asymmetry
 - Branching Fraction
 - Direct CP Asymmetry (A_{CP})
 - Lepton Flavor Asymmetry (LFA)
 - CP-averaged Isospin Asymmetry (A_I)
- Analysis outline
- Results
- Conclusions and Future Work

Physics Motivation

- B \rightarrow K^(*)II where II are charged lepton pairs e⁺e⁻ or $\mu^+\mu^-$
- This is a flavour changing neutral current decay do not occur at tree level in the standard model

 (C_{10})

Photon penguin (C₇)

$$\frac{\gamma, Z, r}{p} = \frac{1}{p} = \frac{1}$$

- These are rare processes: Branching Fraction ~10⁻⁶
- Possible New Physics diagrams:

Physics Motivation

$$M(B \to K^* \ell^+ \ell^-) = \frac{G_F \alpha_{EM}}{\sqrt{2\pi}} V_{ts}^* V_{tb} \left\{ \begin{bmatrix} C_9^{eff} \left\langle K^* \middle| \overline{s} \gamma_\mu P_L b \middle| B \right\rangle & \text{photon penguin} \\ \text{dom. at v. low } q^2 \right\} \\ \text{mix of Z-penguin, } W^+ W^- \text{ box} & -2 \frac{m_b}{q^2} C_7^{eff} \left\langle K^* \middle| \overline{s} i \sigma_{\mu\nu} q^\nu P_R b \middle| B \right\rangle \\ \left(\overline{\ell} \gamma^\mu \ell \right) \\ + C_{10} \left\langle K^* \middle| \overline{s} \gamma_\mu P_L b \middle| B \right\rangle (\overline{\ell} \gamma^\mu \gamma_5 \ell) \right\}$$

 C's can be affected by new physics; enters at same order as Standard Model (SM)

$$\frac{dA_{FB}}{ds} \propto -C_{10} \left\{ \operatorname{Re}\left(C_{9}^{eff}\right) VA_{1} + \frac{m_{b}m_{B}}{s} C_{7}^{eff} \left[VT_{2}\left(1 - \frac{m_{K}}{m_{B}}\right) + A_{1}T_{1}\left(1 + \frac{m_{K}}{m_{B}}\right) \right] \right\}$$
Large s
• T,V and A are hadronic form factors
• $q^{2} = s = m_{\parallel}^{2}$

4

K*II Lepton Angular Asymmetry

- → $\vartheta_{_{|}}$ lepton angle in di-lepton rest frame. Forward-backward asymmetry (A_{FB})
- ϑ_{k^*} kaon angle in the K* rest frame: K* polarisation (F₁)
- ♦ angle between K* and di-lepton decay planes

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{l}} = \frac{3}{4} F_{L} (1 - \cos^{2}\theta_{l}) + \frac{3}{8} (1 - F_{L}) (1 + \cos^{2}\theta_{l}) + A_{FB} \cos\theta_{l}$$

$$P = -C7(SM)$$

$$P = -C9C10(SM)$$

$$P = -C7(SM),$$

$$P = -C7(SM),$$

$$P = -C7(SM),$$

Rate Asymmetries

• Direct CP asymmetry, A_{CP}:

$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)}l^{+}l^{-}) - \Gamma(B \to K^{(*)}l^{+}l^{-})}{\Gamma(\bar{B} \to \bar{K}^{(*)}l^{+}l^{-}) + \Gamma(B \to K^{(*)}l^{+}l^{-})}$$

Lepton flavour asymmetry ratios:

$$R_{K} = \boldsymbol{B}(B \to K \,\mu^{+} \,\mu^{-}) / \boldsymbol{B}(B \to K \,e^{+} \,e^{-})$$
$$R_{K}^{*} = \boldsymbol{B}(B \to K^{*} \,\mu^{+} \,\mu^{-}) / \boldsymbol{B}(B \to K^{*} \,e^{+} \,e^{-})$$

• CP-averaged Isospin Asymmetry A_i:

$$dA_{I} = \frac{d \Gamma (B^{0} \to K^{(*0)} l^{+} l^{-}) / ds - d \Gamma (B^{\pm} \to K^{(*\pm)} l^{+} l^{-}) / ds}{d \Gamma (B^{0} \to K^{(*0)} l^{+} l^{-}) / ds + d \Gamma (B^{\pm} \to K^{(*\pm)} l^{+} l^{-}) / ds}$$

Previous Results

Branching Fraction

Belle branching fraction (BF) is 2x Babar, CDF

Belle 05, 357/fb K*II AFB

Babar and Belle both measure consistent values for K*II and KII A_{FB}

Analysis Details

- More data Almost twice as much as previous analysis
- More modes Reconstruct 4 K*II modes and 2 KII modes

B->K*II modes:	$B^0 \rightarrow K^+ \pi^0 e^+ e^-$	NEW
	$B^+ \rightarrow K_s \pi^+ e^+ e^-$	
	$B^0 { o} K^+ \pi^- \mu^+ \mu^-$	
	$B^0 \rightarrow K^+ \pi^- e^+ e^-$	

- Better detector Improved muon identification
- Mass regions Low q² < 6.25 GeV²/c⁴
 High q² > 10.24 GeV²/c⁴

Backgrounds

- Sideband region in m_{ES} (beam constrained mass) is used to find the angular distribution of the backgrounds: 5.20 < m_{ES} < 5.27
- Combinatoric
- Peaking Charmonium: $B \rightarrow K^* J / Psi(\rightarrow l^+ l^-)$
 - Hadronic: $B \rightarrow \pi D(\rightarrow \pi \pi \text{ or } K \pi)$
 - Photon Conversions: $B \rightarrow K^* \gamma (\gamma \rightarrow e^+ e^-)$

Fit Strategy

Combine the datasets for the K*II modes in each of the q² bins and fit

- Multidimensional fit in m_{FS} , $\cos\vartheta_{k}$, $\cos\vartheta_{l}$
 - signal, combinatoric and peaking background components modeled in the fit
- \blacktriangleright Fit $m_{_{\rm ES}}$ to extract the signal yield
- Fit $\cos \vartheta_k$ with m_{FS} constant to extract F_1
- \clubsuit Fit cos $\vartheta_{\rm I}$ with m_{\rm _{ES}}, F_{\rm _{L}} constant to extract A_{\rm _{FB}}
- \clubsuit Fit KII data, $A_{_{\rm FB}}$ is zero validation

Validation - Charmonium

Motivation

- Decays into the same final state
- BF is 1000x larger than K*II
- Removed by 2.5 < m_µ < 3.2GeV/c²
 and 3.6 < m_µ < 3.75GeV/c²
- Results consistent with recent results:

Preliminary K*II Angular Fits

dot: signal; dot-dash: background; long dash: peaking bkg

Preliminary Results for F_L and A_{FB}

Conclusions and Future Work

- Results for F_L and A_{FB} are consistent with the SM
- Result for the Branching Fraction and Rate Asymmetries will be published soon
- Up-date of the angular analysis is in progress
 - Will include a measurement of the decay plane angle (ϕ)
 - Final analysis over Babar's entire dataset

Backup Slides

Belle

AFB(B->K*II) = 0.50+/-0.15+/-0.02 AFB(B->KII)=0.10+/-0.14+/-0.01 **Direct CP Asymmetry**

 $A_{CP}(B^+ \to K^+ l^+ l^-) = -0.07 \pm 0.22 \pm 0.02$ $A_{CP}(B \to K^* l^+ l^-) = +0.03 \pm 0.23 \pm 0.03$

 Babar and Belle both measure consistent values for K*II and KII AFB

BF Fit Results

- Data fits
- Table of results

Previous Babar Results

Phys.Rev.D 73 092001 (2006) hep-ex/0604002v2

Babar 06, 210/fb K*II A_{FR}

 K* polarisation consistent with SM Low q² lower limit excludes SM at 98% CL (2.5σ)

> AFB > 0.19 (95% CL) AFB(SM) = 0.03

•At high q², wrong-sign $C_{9}C_{10}$ is excluded at >3 σ

AFB = 0.72+0.28-0.26+/-0.08 AFB(SM) = 0.38

Interpretation of Rate Results

Validation - Charmonium

Fit to mES for Charmonium: $B^0 \mathbf{u} K^{\mathbf{u}} \mathbf{u}^{\mathbf{u}} \mathbf{u}^{\mathbf{u}}$

Fit to the dataset – good agreement

•BF = $1.38210^{23} 23.16210^{25}$

◆BF for all modes agree with PDG within a few %

Validation - Charmonium

hep-ex/0607081

BaBar Detector