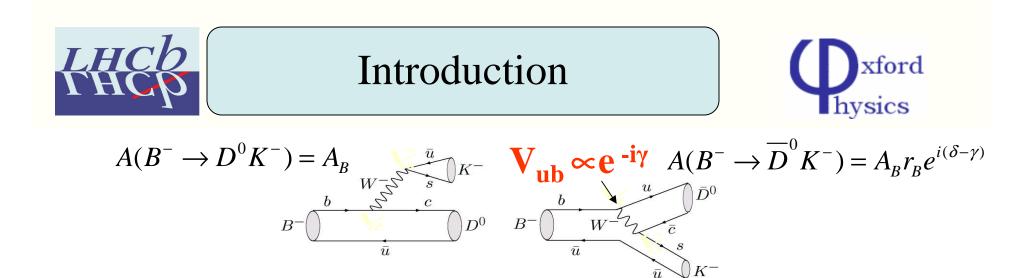


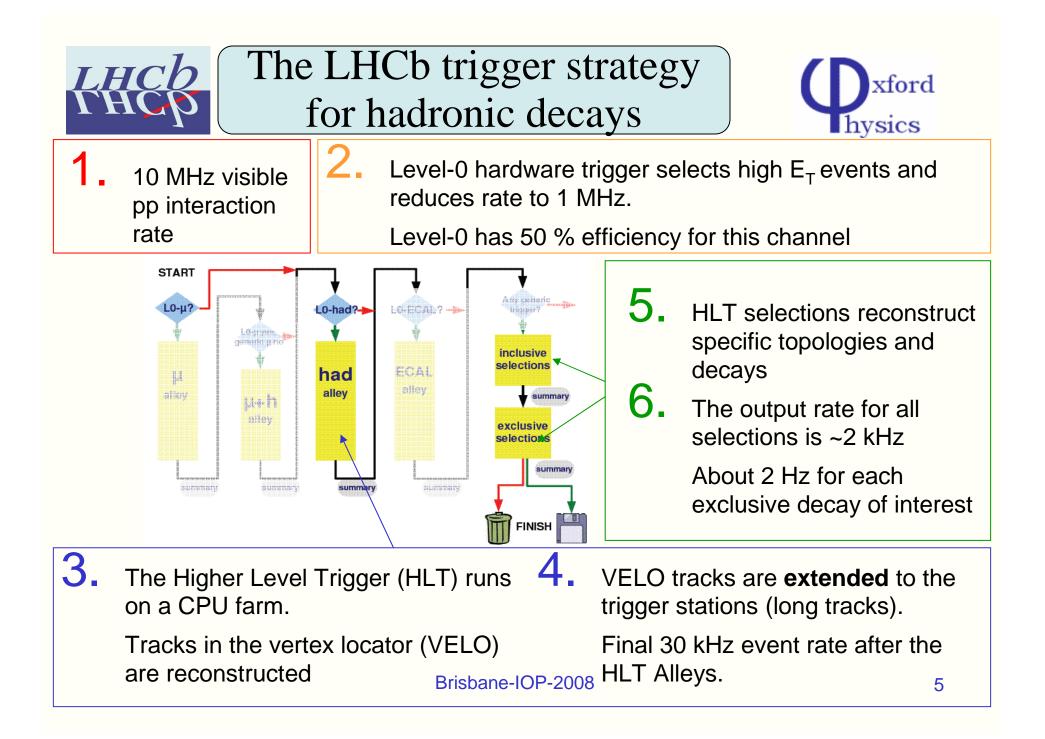
1

Measurement of γ with B[±] \rightarrow D(K_S⁰ $\pi^+\pi^-$)K[±] at LHCb: technical and systematic challenges

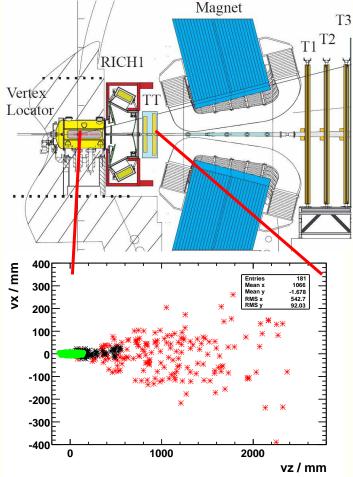

S. Brisbane IOP HEP group meeting 01/03/2008

Outline

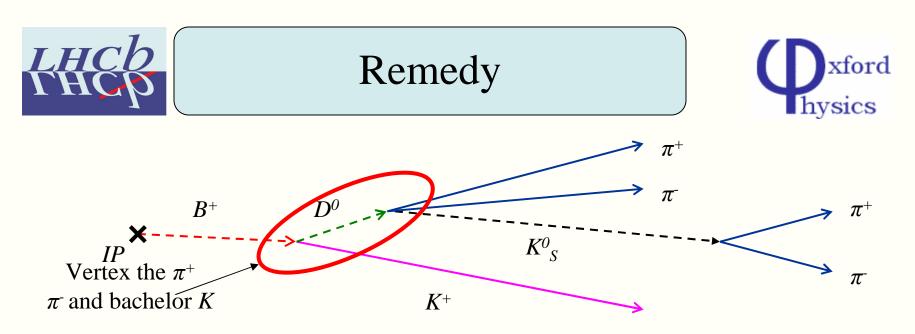
- Introduction
- Online event selection (trigger)
 - The LHCb trigger strategy
 - Difficulties triggering on the K_S^0
- Extracting γ from B[±] \rightarrow D(K_S⁰ $\pi^+\pi^-$)K[±]
 - I show a model independent method
 - For more details:
 - Giri et al. PRD 68, 054018 (2003)
 - Bondar and Poluektov, Eur. Phys. J. C47, 347 (2006) and hep-ph/070326
 - Sensitivity study at LHCb



- Can utilise the interference between b→c ū s and b→c̄ u s transitions in B[±]→DK[±] to extract
- No penguins \rightarrow Standard candle for γ
- In D(K_S⁰π⁺π⁻)K[±] case, γ and r_B must be extracted from fit to a Dalitz plot
 - Rich resonance structure & overlapping resonances


Triggering on K⁰_s

The K_s^0 problem



Decay vertex of downstream $K_s^{0}(red)$ extended (black) and heavy flavour (green)

- **Tracks** from **D**⁰ and **B**[±] decays originate in vertex locator
 - Found easily
 - Extended through magnet
- Most K_s⁰ decays are outside the vertex locator (downstream).
 - Daughters **not reconstructed** in trigger alleys
- A dedicated downstream tracking for K_s⁰ :
 - Too CPU intensive to be run straight after alleys

Brisbane-IOP-2008

- Vertex the π^+ , π^- and bachelor K^+
- Topological cuts on combination
- Preliminary efficiency 80 -90 % for offline selected events passing the hadron alley
- Background **rate reduced** by a factor of 15
- Then possible to reconstruct downstream tracks from K_s⁰ and combine for exclusive selection

Ongoing work to ensure HLT selection will be in place for first data

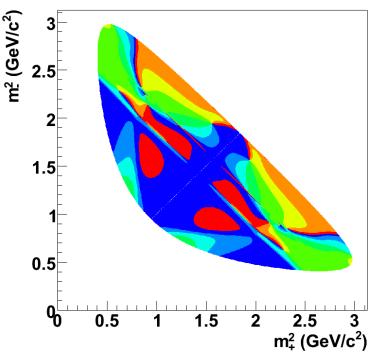
Extracting γ in a model independent way

The need for alternative

methods to extract γ

- $(H_{0}^{s})_{2}^{2} = (K^{s})_{1}^{2} = (K^{s}$
- Determining γ with $\mathbf{B}^{\pm} \rightarrow D(\mathbf{K}_{S}^{0}\pi^{+}\pi^{-})\mathbf{K}^{\pm}$
- Best measurements of γ dominated by statistical error
 - Un-binned analysis of the Dalitz plot
 - Must **select a model** for un-binned analysis
- At LHCb, statistical error expected to be 7-12° with the 2fb⁻¹ in a nominal year
 - From unbinned maximum likelihood method, see Y. Li's talk
 - Exploits limited statistics well

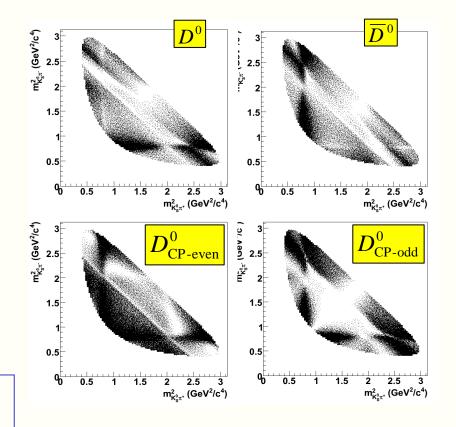
However, model error likely to dominate within 1 year at LHCb


Binned, model independent method : Formalism

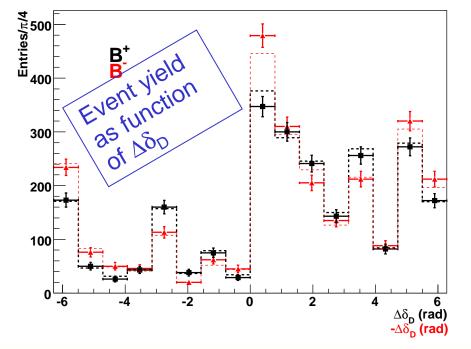
- Decay amplitude of the B $A(B^- \to D^0 K^-) = A_B$ $A(B^- \to \overline{D}^0 K^-) = A_B r_B e^{i(\delta - \gamma)}$
- Partial width of the system $d\Gamma(B^{-} \to (K_{s}^{0}\pi^{+}\pi^{-})_{D}K^{-} = f^{2}(m_{+}^{2}, m^{2}) + r_{B}^{2}f^{2}(m_{-}^{2}, m_{+}^{2}) + 2r_{B}Re[f(m_{+}^{2}, m_{-}^{2})f^{*}(m_{-}^{2}, m_{+}^{2})e^{-i(\delta_{B}-\gamma)}]$
- Must integrate over a region of phase space

Integral of interference term can be written as : $c_{i} \cos(\delta_{\rm B} - \gamma) + s_{i} \sin(\delta_{\rm B} - \gamma)$ where $c_{i} = \int_{1} [f(m_{+}^{2}, m_{-}^{2})f(m_{-}^{2}, m_{+}^{2})\cos(\Delta\delta_{\rm D})]dp$ $s_{i} = \int_{1} [f(m_{+}^{2}, m_{-}^{2})f(m_{-}^{2}, m_{+}^{2})\sin(\Delta\delta_{\rm D})]dp$

Sensitivity to γ is slightly reduced by the binning (80-90 % of unbinned method)


Partition of the Dalitz plot into **bins** defined in terms of the **strong phase difference** between symmetric points in Dalitz space

- Data from CLEO-c $e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D^0}$
- Allows admixtures and gives information on strong phase
 - Independent measurement of s_i, c_i
- Dalitz structure determined from flavour specific D decays
- For now use the model described in hep-ex/0607104 (BaBar) to estimate parameters


CLEO-c replaces the model error with a 3°-5° systematic

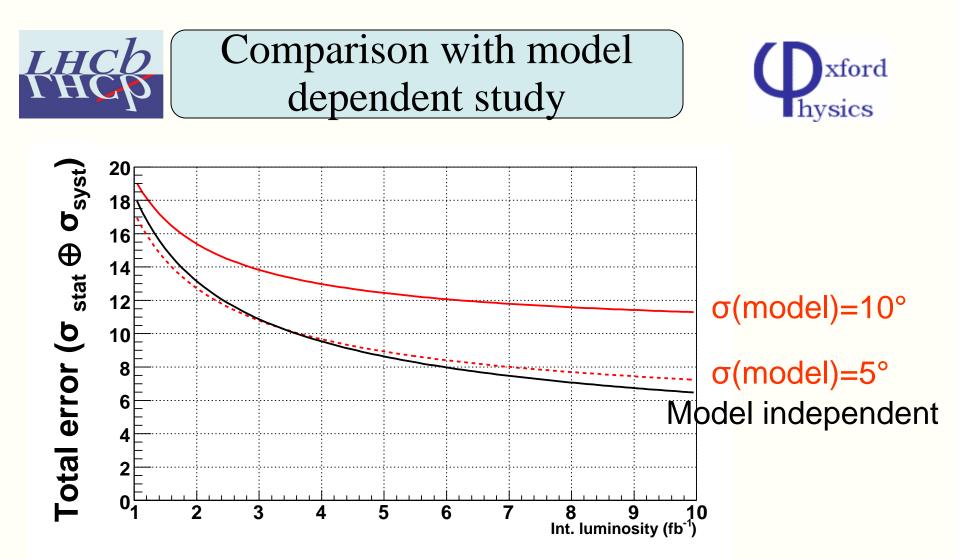
Sensitivity at LHCb

Generated charge asymmetry (points).

The fit is shown by the dashed lines

The binning is the same as on slide 10 with δ_D offset by $\pi\!/_8$ rad to simplify presentation

- Assume 5000 events per 2 fb⁻¹
 - Y. Li
 - Downstream K_s⁰ included
- Toy samples generated with $\gamma = 60^{\circ}$, $r_B = 0.1$, $\delta_B = 130^{\circ}$
- Perform simultaneous fit to variables
 - $x=r_B\cos(\delta \pm \gamma)$
 - $y=r_B sin(\delta \pm \gamma)$
- Plot shown without background or acceptance effects


Background

Backgrounds estimated from GEANT4 simulation

- D⁰($K_S^0 \pi^+ \pi^-$) π^{\pm} (π mis-ID as K)
- Worst case combinatoric B/S<0.7
- K \pm mis-id rate can be determined from $D^{+*} \rightarrow D^{0}(K\pi)\pi^{\pm}$ to better than 1%
- Absolute combinatoric B/S will be determined from B and D mass sidebands

Scenario	2 fb ⁻¹ Mod. Independent	2 fb ⁻¹ Mod. Dep. (LHCb- 048-2007)
	σ_{stat}	σ_{stat}
No background	8 °	6°
With background	9-13 °	7-12°

Currently expected model error at LHCb is $10-15^{\circ}$ (sc ales with $1/r_{B}$)

A model error on gamma of 5° is shown for comparison , may be possible with an improved model of the D Dalitz distribution Brisbane-IOP-2008

- Development of robust HLT for B[±] \rightarrow D(K_S⁰ $\pi^{+}\pi^{-}$)K[±] is well advanced
 - K_S⁰ decaying outside vertex detector requires novel strategies
- Complementary model independent analysis useful at high statistics
 - Binning definition consistent with CLEO-C
 - Error on γ in 1 nominal year 8-13°
- Statistical sensitivity of this mode to γ in LHCb lifetime 4-6°, dependent on background