Branching Ratio Measurement $Br(B_s^0 \rightarrow D_s^{(*)}D_s^{(*)})$ at the DØ Experiment

James Walder Lancaster University

On behalf of the

Collaboration

- Bs meson sector
- The DØ detector
- Extracting $\operatorname{Br}(B_s^0 \to D_s^{(*)} D_s^{(*)})$
- Normalisation channel
- Background contributions
- Results and Summary

Strange Properties of Beautiful Mesons

• Flavour B_s^0, \bar{B}_s^0 and mass B_L, B_H eigenstates different

Measuring Beyond SM effects

- M_{12} sensitive to effects of new physics, both through $|M_{12}|$ and $\arg(M_{12})$.
- $|M_{12}|$ measured from $\Delta m_s \sim 2|M_{12}|$
- $\arg(M_{12})$ can be obtained through

$$\phi_s = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

• Γ_{12} from tree level processes; new physics unlikely, however NP can enter width difference through ϕ_s

 $\Delta\Gamma_s = 2|\Gamma_{12}|\cos\phi_s \approx \Delta\Gamma_{\rm SM}\cos\phi_s$

- leads to decrease in $\Delta \Gamma_s$.
- Gluinos and squarks in MSSM box diagrams can compete with SM contributions,

Width Difference $\Delta\Gamma_s$

- Width difference $\Delta\Gamma_s = \Delta\Gamma_s^{CP} \cos \phi_s$, where $\Delta\Gamma_s^{CP} \equiv 2|\Gamma_{12}| = \Gamma(\text{even}) - \Gamma(\text{odd})$ is the difference between the CP-even and CP-odd final-states.
- $\Delta \Gamma_s^{CP}$ is independent to CP-violation, provides a further check on NP
- Effects from New Physics processes may reduce width difference

CP - even final states $\Delta \Gamma_s$

CP - odd final states $\Delta \Gamma_s \downarrow$

• Width difference in Bs system predicted in SM as

 $\frac{\Delta \Gamma_s}{\Gamma_s} = 0.124 \pm 0.056$

hep-ph/0612167v3

$B_s \rightarrow D_s^{(*)} D_s^{(*)}$

- Decay of $B_s \rightarrow D_s^+ D_s^-$ is pure CP-even
- Under certain theoretical assumptions D_s^(*)D_s^(*) is mainly CP-even.
- Under these assumptions, measurement of branching fraction allows determination of the width difference $\Delta\Gamma_s^{\rm CP}$ $2{\rm Br}(B_s^0 \to D_s^{(*)}D_s^{(*)}) = \frac{\Delta\Gamma_s^{\rm CP}}{\Gamma_s} \left\{ 1 + \mathcal{O}\left(\frac{\Delta\Gamma_s}{\Gamma_s}\right) \right\}$
- Measurement of ${\rm Br}(B^0_s\to D^{(*)}_sD^{(*)}_s)$ previously performed at ALEPH from study of correlated $\phi\phi$ production from Z decays

$$2 \cdot \operatorname{Br}(B_s^0 \to D_s^{(*)} D_s^{(*)}) = (23^{+21}_{-13})\%$$

Measuring B_s mesons at DØ

- Most B physics analyses utilise excellent 3-layer muon system with large |η|<2 coverage.
- Vertexing and decay-length measurements using silicon and fiber-tracking systems, enclosed within 2T field.
- Over 3.5fb⁻¹ delivered by accelerator division to DØ since 2002.
- This analysis used ~Ifb⁻¹ integrated luminosity.

n = 0

Preshower

Solenoid

Fiber Tracker

Silicon Tracker

Normalisation Channel

- Normalise main decay to $B_s^0 \rightarrow D_s^{(*)} \mu X$ to reduce detector related systematics.
- Number of events in normalisation channel estimated from binned fit.
- Double Gaussian for φ peak, single Gaussians for Ds and D peaks.
- Background parameterised by 2nd-order polynomial.

James Walder – Lancaster Ur.

0.98

1.02

1.04

1.06

m_{κκ} [GeV/c²]

IOP Conference – 31 March 2008

Extracting $N(\mu \phi D_s^{(*)})$

- Use 2-dimensional unbinned maximum log-likelihood technique to simultaneously fit:
 - m(KK) from $D_s \to \phi_2 \mu$,
 - and $m(\phi_{\rm l}\pi)$.

Extracting $N(\mu \phi D_s^{(*)})$

- Sample of $(\mu \phi D_s^{(*)})$ events contains contributions:
 - Combinatoric background,
 - Reconstructed $\phi\pi$ in mass peak of Ds, without joint production of ϕ from $\phi\mu$,
 - Reconstructed ${\bf \phi}$ from $\phi\mu$, without joint production of $\phi\pi$ in mass peak of Ds,
 - Joint signal production of $\phi\pi$ and ϕ .
- Use event-by-event fitting procedure to extract fractions of each contribution.

 $\int =$

Results

_<u>/</u>

- From fit estimate $N(\mu \phi D_s^{(*)}) = 13.4_{-6.0}^{+6.6}$ events.
- Plot projection of fit results in signal regions of the non-plotted

Background Contributions

- From MC estimate contribution of the normalisation $B_s^0 \rightarrow D_s^{(*)} \mu X$ channel as $f(B_s^0 \rightarrow D_s^{(*)} \mu X) = 0.82 \pm 0.05$
- Using MC and data estimate the background component to the signal process $B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}$

Process

$$B^0 \rightarrow D_s D^{(*)} X$$

 $B^{\pm} \rightarrow D_s D^{(*)} X$
 $B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}$
 $B_s \rightarrow D_s D X$

- Estimate $N_{bkg}(\mu \phi D_s^{(*)}) = 2 \pm 2$ background events.
- Efficiency of reconstruction is found from simulation.
 - Due to trigger effects and uncertainties in B meson production, MC is reweighted.
 - Ratio of efficiencies $\frac{\varepsilon(B_s^0 \to D_s^{(*)}D_s^{(*)})}{\varepsilon(B_s^0 \to \mu\nu D_s^{(*)})} = (5.45 \pm 0.08 \text{ (stat)})\%,$

• Branching fraction measured to be

 $Br(B_s^0 \to D_s^{(*)} D_s^{(*)}) = 0.039^{+0.019}_{-0.017} \,(\text{stat})^{+0.016}_{-0.015} \,(\text{syst})$

• Allows an indirect estimate of $\Delta\Gamma_s$ through

$$\frac{\Delta \Gamma_s^{CP}}{\Gamma_s} \approx 2 \text{Br}(B_s^0 \to D_s^{(*)} D_s^{(*)})$$
$$\frac{\Delta \Gamma_s^{CP}}{\Gamma_s} = 0.079^{+0.038}_{-0.035} (\text{stat})^{+0.031}_{-0.030} (\text{syst})$$

- Consistent with SM prediction $\frac{\Delta\Gamma_s}{\Gamma_s} = 0.124 \pm 0.056^{\text{hep-ph/0612167v3}}$ UTfit recent result (hep-ph 0803.0659) $\frac{\Delta\Gamma_s}{\Gamma} = 0.105 \pm 0.049$
- Published in PRL **99**, 241801 (2007)

Source	Uncertainty in $\operatorname{Br}(B_s^0 \to D_s^{(*)} D_s^{(*)})$
$\operatorname{Br}(D_s \to \phi \pi) = 0.044 \pm 0.006$	$+0.006 \\ -0.005$
$\operatorname{Br}(B_s^0 \to \mu \nu D_s^{(*)}) \operatorname{Br}(D_s \to \phi \pi)$	0.007
$\operatorname{Br}(D_s \to \phi \mu \nu) / \operatorname{Br}(D_s \to \phi \pi)$	0.003
$f(B_s^0 \to \mu \nu D_s^{(*)}) = 0.82 \pm 0.05$	0.002
Background contribution in $N(\mu\phi D_s)$	0.007
Ratio of efficiencies	0.006
Reweighting of MC	0.006
Fitting procedure	0.006

Background Contributions I

- In both normalisation and signal channels additional contributions remain.
- Fit of $(\mu D_s^{(*)})$ sample gave ~18k events in Ds peak. Using MC estimate the fraction of $B^0_s \to D^{(*)}_s \mu X$ in $(\mu D_s^{(*)})$ from composition

Process	$f(b \rightarrow B)$	Branching ratio $(\%)$	r_i
$B^0 \to D_s D^{(*)} X$	0.397	10.5 ± 2.6	0.072 ± 0.018
$B^{\pm} \to D_s D^{(*)} X$	0.397	10.5 ± 2.6	0.076 ± 0.019
$B_s^0 \to D_s^{(*)} D_s^{(*)}$	0.107	12^{+11}_{-7}	0.023 ± 0.017
$B_s \to D_s D X$	0.107	15.4 ± 15.4	0.021 ± 0.021

$$\tau_i = \frac{\varepsilon(b\bar{b} \to BY \to D_s^{(*)}D_xY')}{\varepsilon(b\bar{b} \to B_s^0Y \to D_s^{(*)}\mu\nu Y')},$$

Estimate fraction of $B^0_s \to D^{(*)}_s \mu X$ in sample as $f(B_s^0 \to D_s^{(*)} \mu X) = 0.82 \pm 0.05$

Background Contributions II

• Using MC and scaling to data estimate the backgroup $\Phi_s^{(*)}$ contribution in the fit result of sample.

$$B_s^0 \to D_s^{(*)} D_s^{(*)} K \quad \frac{N_{\rm MC}(m(\mu\phi D_s) > 4.3)}{N_{\rm MC}(m(\mu\phi D_s) < 4.3)} \cdot N_{\rm data}(m(\mu\phi D_s) < 4.3) = 0.14 \pm 0.54$$
$$B_s^0 \to D_s^{(*)} \mu \phi \quad \frac{N_{\rm MC}(m(\mu\phi) < 1.85)}{N_{\rm MC}(m(\mu\phi) > 1.85)} \cdot N_{\rm data}(m(\mu\phi) > 1.85) = 1.8 \pm 1.5$$

• $N_{bkg}(\mu \phi D_s^{(*)}) = 2 \pm 2$ background events in sample.

Selection Criteria

Particle	Selection Criterion		
All tracks:	Number of axial hits in SMT ≥ 2	$D_s \to \phi \mu \nu$	$1.2 < m(\phi\mu) < 1.85 \ {\rm GeV/c^2}$
	Number of axial hits in CFT ≥ 2		$\chi^2(\text{vertex}) < 16$
Muon:	$p_{\rm T}>2~{\rm GeV/c}$		$d_T^D / \sigma(d_T^D) > 1$
	p>3~GeV/c	$B_s^0 \to \mu D_s$:	$\chi^2(B \text{ vertex}) < 16$
	$nseg \ge 2$		$m(\mu D_s) < 5.2 \text{ GeV/c}^2$
Pion:	$p_{\rm T} > 1.0~{\rm GeV/c}$		$d_T^B < d_T^D$ or $d_T^{BD} < 2 \cdot \sigma(d_T^{BD})$
	Opposite charge combination (μ^{\pm}, π^{\mp})		$L(\mu D_s) = M(B_s) \cdot d_T^B / P_T(\mu D_s) > 150 \mu \mathrm{m}$
K^{\pm} :	$p_{\rm T} > 0.8~{\rm GeV/c}$		Iso > 0.6
ϕ :	Both kaons to have $S_K > 4$, as defined in Eq. (3)	$B_s^0 \to \mu \phi D_s$:	$\chi^2(B \text{ vertex}) < 16$
	Opposite kaon charge combination		$4.3 < m(\mu \phi D_s) < 5.2 \text{ GeV/c}^2$
	$m : 1.01 < m(KK) < 1.03 \text{ GeV/c}^2$		$d_T^B < d_T^D \text{ or } d_T^{BD} < 2 \cdot \sigma(d_T^{BD})$
	$w: 0.99 < m(KK) < 1.07 \text{ GeV/c}^2$		$L(\mu\phi D_s) = M(B_s) \cdot d_T^B / P_T(\mu\phi D_s) > 150\mu \mathrm{m}$
$D_s \to \phi \pi$:	$1.7 < m(\phi\pi) < 2.3 \ {\rm GeV/c}$		
	$\chi^2(\text{vertex}) < 16$		<i>Iso</i> > 0.6
	$d_T^D / \sigma(d_T^D) > 4$		
	$\cos(\alpha_T^D) > 0.9$		
	Helicity between D_s and K , $ \cos(\theta) > 0.35$		