Branching Ratio Measurement

$\operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)$
 at the $\mathrm{D} \varnothing$ Experiment

James Walder
Lancaster University

On behalf of the \square Collaboration

Outline

- Bs meson sector
- The DØ detector
- Extracting $\operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)$
- Normalisation channel
- Background contributions
- Results and Summary

Strange Properties of Beautiful Mesons

- Neutral mesons with fast oscillation rate $\begin{gathered}\text { u,c,t } \\ \left(\sim 18^{\frac{b}{b}} \mathrm{ps}^{-1}\right)\end{gathered}$

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{B_{s}^{0}}{\bar{B}_{s}^{0}}=\left(\begin{array}{cc}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right)\binom{B_{s}^{0}}{\bar{B}_{s}^{0}}
$$

- Flavour $B_{s}^{0}, \bar{B}_{s}^{0}$ and mass B_{L}, B_{H} eigenstates different

5 observables

M_{12} dominated by $b \rightarrow t \bar{t} s$

$$
\begin{array}{ll}
M_{s}=\frac{M_{H}+M_{L}}{2} & \Delta m_{s}=M_{H}-M_{L} \sim 2\left|M_{12}\right| \\
\Gamma_{s} \equiv \frac{1}{\bar{\tau}_{s}}=\frac{\Gamma_{L}+\Gamma_{H}}{2} & \Delta \Gamma_{s}=\Gamma_{L}-\Gamma_{H} \sim 2\left|\Gamma_{12}\right| \cos \phi_{s} \\
\left.M_{12}\right) & \quad \Gamma_{12} \text { dominated by } b \rightarrow c \bar{c} s
\end{array}
$$

$$
\phi_{s}=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right)
$$

Measuring Beyond SM effects

- M_{12} sensitive to effects of new physics, both through $\left|M_{12}\right|$ and $\arg \left(M_{12}\right)$.
- $\left|M_{12}\right|$ measured from $\Delta m_{s} \sim 2\left|M_{12}\right|$
- $\arg \left(M_{12}\right)$ can be obtained through $\phi_{s}=\arg \left(-\frac{M_{12}}{\Gamma_{12}}\right)$
- Γ_{12} from tree level processes; new physics unlikely, however NP can enter width difference through ϕ_{s}

$$
\Delta \Gamma_{s}=2\left|\Gamma_{12}\right| \cos \phi_{s} \approx \Delta \Gamma_{\mathrm{SM}} \cos \phi_{s}
$$

- leads to decrease in $\Delta \Gamma_{s}$.
- Gluinos and squarks in MSSM box diagrams can compete with SM contributions,

Width Difference $\Delta \Gamma_{s}$

- Width difference $\Delta \Gamma_{s}=\Delta \Gamma_{s}^{\mathrm{CP}} \cos \phi_{s}$, where $\Delta \Gamma_{s}^{\mathrm{CP}} \equiv 2\left|\Gamma_{12}\right|=\Gamma$ (even) $-\Gamma$ (odd) is the difference between the CP-even and CP-odd final-states.
- $\Delta \Gamma_{s}^{\mathrm{CP}}$ is independent to CP-violation, provides a further check on NP
- Effects from New Physics processes may reduce width difference

CP - even final states $\Delta \Gamma_{s} \uparrow$
CP - odd final states $\Delta \Gamma_{s} \downarrow$

- Width difference in Bs system predicted in SM as

$$
\frac{\Delta \Gamma_{s}}{\Gamma_{s}}=0.124 \pm 0.056
$$

hep-ph/0612167v3

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{(4)} \mathrm{D}_{\mathrm{s}}{ }^{\left({ }^{(}\right)}$

- Decay of $B_{s} \rightarrow D_{s}{ }^{+} D_{s}{ }^{-}$is pure CP-even
- Under certain theoretical assumptions $\left.D_{s}{ }^{(*)} D_{s}{ }^{*}\right)$ is mainly CP-even.
- Under these assumptions, measurement of branching fraction allows determination of the width difference $\Delta \Gamma_{s}^{\mathrm{CP}}$
$2 \operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)=\frac{\Delta \Gamma_{s}^{C P}}{\Gamma_{s}}\left\{1+\mathcal{O}\left(\frac{\Delta \Gamma_{s}}{\Gamma_{s}}\right)\right\}$
- Measurement of $\operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)$ previously performed at ALEPH from study of correlated $\phi \phi$ production from Z decays
$2 \cdot \operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)=\left(23_{-13}^{+21}\right) \%$

Measuring B_{s} mesons at $D \varnothing$

- Tevatron: proton-antiproton collisions at $\sqrt{s}=1.96 \mathrm{TeV}$.
- Most B physics analyses utilise excellent 3-layer muon system with large $|\eta|<2$ coverage.
- Vertexing and decay-length measurements using silicon and fiber-tracking systems, enclosed within 2T field.
- Over 3.5fb-1 delivered by accelerator division to $D \varnothing$ since 2002.
- This analysis used $\sim \mid \mathrm{fb}^{-1}$ integrated luminosity.

Branching Fraction Determination

- Branching ratio is determined from expression:

Determined from Data/Simulation

What we want

$$
\frac{2 \circledast \operatorname{Br}^{\operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right.} \cdot \frac{\operatorname{Br}\left(D_{s} \rightarrow \phi \mu \nu\right)}{\operatorname{Br}\left(B_{s}^{0} \rightarrow \mu \nu D_{s}^{(*)}\right)} \operatorname{Br}\left(\phi \rightarrow K^{+} K^{-}-\frac{\varepsilon\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)}{\varepsilon\left(B_{s}^{0} \rightarrow \mu \nu D_{s}^{(*)}\right)}\right)}{\substack{\text { Reconstruction efficiencies } \\ \text { (from MC) }}}
$$

Normalisation Channel

- Normalise main decay to $B_{s}^{0} \rightarrow D_{s}^{(*)} \mu X$ to reduce detector related systematics.
- Number of events in normalisation channel estimated from binned fit.
- Double Gaussian for φ peak, single Gaussians for Ds and D peaks.
- Background parameterised by 2nd-order polynomial.
- Extracted values used as fixed inputs in other fits.
$N\left(\mu D_{s}\right)=17,700 \pm 230$.

Extracting $N\left(\mu \phi D_{s}^{(*)}\right)$

- Use 2-dimensional unbinned maximum log-likelihood technique to simultaneously fit:
- $m(K K)$ from $D_{s} \rightarrow \phi_{2} \mu$,
- and $m\left(\phi_{1} \pi\right)$.

Extracting $N\left(\mu \phi D_{s}^{(*)}\right)$

- Sample of $\left(\mu \phi D_{s}^{(*)}\right)$ events contains contributions:
- Combinatoric background,
- Reconstructed $\phi \pi$ in mass peak of Ds, without joint production of φ from $\phi \mu$,
- Reconstructed φ from $\phi \mu$, without joint production of $\phi \pi$ in mass peak of Ds,
- Joint signal production of $\phi \pi$ and φ.
- Use event-by-event fitting procedure to extract fractions of each contribution.

$$
\mathcal{L}=\prod_{i}^{\mathcal{F}\left(M_{D}, M_{\phi}\right)} \begin{aligned}
& =f_{s} \mathcal{S}_{D}\left(M_{D}\right) \mathcal{S}_{\phi}\left(M_{\phi}\right) \\
& +f_{\phi} \mathcal{B}\left(M_{D}, a_{D}, b_{D}\right) \mathcal{S}_{\phi}\left(M_{\phi}\right) \\
& +f_{D} \mathcal{S}_{D}\left(M_{D}\right) \mathcal{B}\left(M_{\phi}, a_{\phi}, b_{\phi}\right) \\
& +\left(1-f_{s}-f_{D}-f_{\phi}\right) \mathcal{B}\left(M_{D}, a_{D}, b_{D}\right) \mathcal{B}\left(M_{\phi}, a_{\phi}, b_{\phi}\right),
\end{aligned}
$$

Results

- From fit estimate $N\left(\mu \phi D_{s}^{(*)}\right)=13.4_{-6.0}^{+6.6}$ events.
- Plot projection of fit results in signal regions of the non-plotted mass.

Background Contributions

- From MC estimate contribution of the normalisation $B_{s}^{0} \rightarrow D_{s}^{(*)} \mu X$ channel as $f\left(B_{s}^{0} \rightarrow D_{s}^{(*)} \mu X\right)=0.82 \pm 0.05$
- Using MC and data estimate the background

Process
$B^{0} \rightarrow D_{s} D^{(*)} X$
$B^{ \pm} \rightarrow D_{s} D^{(*)} X$
$B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}$
$B_{s} \rightarrow D_{s} D X$ component to the signal process
$B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}$

- Estimate $N_{b k g}\left(\mu \phi D_{s}^{(*)}\right)=2 \pm 2$ background events.
- Efficiency of reconstruction is found from simulation.
- Due to trigger effects and uncertainties in B meson production, MC is reweighted.
- Ratio of efficiencies $\frac{\varepsilon\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)}{\varepsilon\left(B_{s}^{0} \rightarrow \mu \nu D_{s}^{(*)}\right)}=(5.45 \pm 0.08$ (stat) $) \%$,

Summary

- Branching fraction measured to be

$$
\operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)=0.039_{-0.017}^{+0.019}(\text { stat })_{-0.015}^{+0.016}(\text { syst })
$$

- Allows an indirect estimate of $\Delta \Gamma_{s}$ through

$$
\begin{aligned}
& \frac{\Delta \Gamma_{s}^{C P}}{\Gamma_{s}} \approx 2 \operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right) \\
& \frac{\Delta \Gamma_{s}^{C P}}{\Gamma_{s}}=0.079_{-0.035}^{+0.038}(\text { stat })_{-0.030}^{+0.031}(\mathrm{syst})
\end{aligned}
$$

- Consistent with SM prediction $\Delta \Gamma_{s} \quad$ hep-ph/0612167v3

UTfit recent result (hep-ph 0803.0659) $\frac{\Delta \Gamma_{s}}{\Gamma_{s}}=0.105 \pm 0.049$

- Published in PRL 99, 24I80I (2007)

Backup

Systematic Uncertainties

Source	Uncertainty in $\operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)$
$\operatorname{Br}\left(D_{s} \rightarrow \phi \pi\right)=0.044 \pm 0.006$	${ }_{-0.005}^{+0.006}$
$\operatorname{Br}\left(B_{s}^{0} \rightarrow \mu \nu D_{s}^{(*)}\right) \operatorname{Br}\left(D_{s} \rightarrow \phi \pi\right)$	0.007
$\operatorname{Br}\left(D_{s} \rightarrow \phi \mu \nu\right) / \operatorname{Br}\left(D_{s} \rightarrow \phi \pi\right)$	0.003
$f\left(B_{s}^{0} \rightarrow \mu \nu D_{s}^{(*)}\right)=0.82 \pm 0.05$	0.002
Background contribution in $N\left(\mu \phi D_{s}\right)$	0.007
Ratio of efficiencies	0.006
Reweighting of MC	0.006
Fitting procedure	0.006

Background Contributions

- In both normalisation and signal channels additional contributions remain.
- Fit of $\left(\mu D_{s}^{(*)}\right)$ sample gave $\sim 18 \mathrm{k}$ events in Ds peak. Using MC estimate the fraction of $B_{s}^{0} \rightarrow D_{s}^{(*)} \mu X$ in $\left(\mu D_{s}^{(*)}\right)$ from composition

Process	$f(b \rightarrow B)$	Branching ratio (\%)	r_{i}
$B^{0} \rightarrow D_{s} D^{(*)} X$	0.397	10.5 ± 2.6	0.072 ± 0.018
$B^{ \pm} \rightarrow D_{s} D^{(*)} X$	0.397	10.5 ± 2.6	0.076 ± 0.019
$B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}$	0.107	12_{-7}^{+11}	0.023 ± 0.017
$B_{s} \rightarrow D_{s} D X$	0.107	15.4 ± 15.4	0.021 ± 0.021

- Estimate fraction of $B_{s}^{0} \rightarrow D_{s}^{(*)} \mu X$ in sample as $f\left(B_{s}^{0} \rightarrow D_{s}^{(*)} \mu X\right)=0.82 \pm 0.05$

Background Contributions II

- Using MC and scaling to data estimate the backgr $\left.(\underline{q} \mu \boldsymbol{m}) \Phi_{s}^{(*)}\right)$ contribution in the fit result of sample.

$$
\begin{aligned}
& B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)} K \quad \frac{N_{\mathrm{MC}}\left(m\left(\mu \phi D_{s}\right)>4.3\right)}{N_{\mathrm{MC}}\left(m\left(\mu \phi D_{s}\right)<4.3\right)} \cdot N_{\mathrm{data}}\left(m\left(\mu \phi D_{s}\right)<4.3\right)=0.14 \pm 0.54 \\
& B_{s}^{0} \rightarrow D_{s}^{(*)} \mu \phi \quad \frac{N_{\mathrm{MC}}(m(\mu \phi)<1.85)}{N_{\mathrm{MC}}(m(\mu \phi)>1.85)} \cdot N_{\mathrm{data}}(m(\mu \phi)>1.85)=1.8 \pm 1.5
\end{aligned}
$$

- $N_{b k g}\left(\mu \phi D_{s}^{(*)}\right)=2 \pm 2$ background events in sample.

Selection Criteria

- To reduce background apply number of kinematic and topological selection cuts.

