\mathbf{B}_{2}^{*}

Wide L=1 States

 B_1

First Observation of the Excited Bs2* Meson at D0

Mark Williams, Iain Bertram, Guennadi Borrisov and Peter Ratoff Lancaster University

Contents

- (Brief) Theory of B meson spectroscopy:
 - What states are we looking for?
- Selecting B_s** events.
 - How do we find them?
- Fitting the mass distribution.
 - What do they look like?
- Interpreting the mass fit.
 - What does this mean?
- B_{s2}* production rate.
 - How rare are these states?
- Results and Conclusions.

b-Meson Spectroscopy - Theory

The (bd), (bs) quark systems are well modeled by Heavy-Quark Effective Theory, since M(b) >> M(u,d,s). Theory predicts *four orbitally-excited L=1 states*, in addition to the well-measured ground state $B_{(s)}^{+}$, and singly-excited state $B_{(s)}^{+*}$.

• The two L=1, $j_q = \frac{1}{2}$ states are too wide (> 100 MeV) to be distinguished from background. Studies are therefore limited to the observation and measurement of the narrow states B_{s1} and B_{s2} , collectively denoted by B_{sJ} or B_s^{**} .

Dominant decay mode is $B_s^{**} \rightarrow B^+K^-$ since decays to $B_s^+\pi^-$ are forbidden by isospin conservation.

(Charge conjugated states are implied.)

b-Meson Spectroscopy – Theory (2)

- By parity and angular momentum conservation, the B_{s1} decays 100% to B^{+*} .
- The B_{s2}^{*} can decay directly to the ground-state B^{+} , or via the intermediate state B^{+*} , with a branching ratio 1:1 predicted by theory.
- The B^{+*} decays ~100% to B⁺ with the release of a photon of energy 45.78 \pm 0.35 MeV.

However...

Phase space factors can have a large effect on these relative decay rates, since they occur close to the production threshold:

$$M(B^{**}) - M(B^{+}) - M(K^{-}) \approx 0$$

Reconstruction and Event Selection

 $B_{s,I}$ mesons reconstructed through final state $K^-K^+\mu^+\mu^-$:

Reconstructing B⁺ Candidates

B⁺ candidates selected using a likelihood ratio method using several discriminating variables.

Signal and physics backgrounds modeled by sum of 3 functions:

- A Gaussian $B^+ \rightarrow J/\psi K^+$ peak.
- $B^+ \rightarrow J/\psi \pi^+$ contamination.
- A contribution from partially reconstructed decays $B^+ \rightarrow J/\psi K^{+*}$, where $K^{+*} \rightarrow K\pi$ (MC simulation).

Combinatorial background parameterised by an exponential function.

- $M(J/\psi K^+)$:
- $N(B^+)$ with 5.19 < M(B+) < 5.36:

$$5271.6 \pm 0.4 \text{ MeV/c}^2$$

$$20,915 \pm 293$$
 Candidates

B_{s,J} Reconstruction and Selection

For each B⁺ meson reconstructed, an additional track (K) is required, which must pass the following selection criteria:

- \geq 2 hits in silicon tracker
- \geq 2 hits in central fiber tracker
- Transverse momentum $\geq 0.60 \text{ GeV/c}$
- Correct charge correlation (i.e. B+K- or B-K+ combinations only)
- $2\sigma B^{+}$ mass window: $5.19 \le M(B^{+}) \le 5.36 \text{ GeV/c}^{2}$
- $S_{PV} \le \sqrt{6}$ (Impact parameter significance i.e. originates at PV)

This particle is assigned the kaon mass, and used to reconstruct the invariant mass M(B+K-). For each track in an event satisfying the above selections, the mass difference is computed:

$$\Delta \mathbf{M} = \mathbf{M}(\mathbf{B}^+\mathbf{K}^-) - \mathbf{M}(\mathbf{B}^+) - \mathbf{M}(\mathbf{K}^-)$$

\mathbf{B}_{sJ} Mass Distribution

- The ΔM distribution is well modelled by a smooth, broad background, except in region (0.05 < ΔM < 0.075) GeV/c², where there is an excess of events.
- This is interpreted as the signature of $B_{s2}^{*} \to B^+K^-$ transitions, since this is the highest energy of the three possible B_{s1} decays.
- Our primary fit hypothesis then assumes that the lower-energy decays are suppressed by phase-space factors we fit with just one signal peak.
- Alternative fit hypotheses are tested later...

Background Contribution in ΔM

• Background is dominated by combinatorial background. The contribution from this source is determined by examining the like-charge BK sample, which has the shape:

$$f_{bckg}(\Delta M) = c(\Delta M)^k + d(\Delta M)$$

In the final fit, c, d and k are kept as free parameters to account for other broad backgrounds:

- Non-resonant production,
- B** reflections,
- Contribution from broad B_{sI} states.
- B** reflections occur when pions in the decays B** \rightarrow B+ π are mis-identified as kaons.

The effects are modelled from MC simulation, with input parameters from the recent B** analysis by D0.

ΔM Distribution: B_{s2}* Fit

- B_{s2}* signal peak parameterised by convolution of a relativistic Breit-Wigner function (actual physical 'shape' of resonance), with a double-Gaussian function (smearing due to limited detector resolution).
- Physical width is fixed at 1.0 MeV/c² (from theory)
- Binned Maximum-Likelihood fit is performed...
- $\Delta M(B_{s2}^*) = 66.7 \pm 1.1 \text{ MeV/c}^2$
- $N(B_{s2}^*) = 125 \pm 25$ events

Combining with PDG masses:

- $M(B_{s2}^*) = 5839.6 \pm 1.1 \text{ MeV/c}^2$
- Fit Significance: 5σ (comparing values of -log(L) with and without signal contribution)

Interpretation: Where are the other peaks??

- The B_{s2}^{*} should decay equally into (B^+K^-) and (B^+K^-) channels why don't we see any excess at $\Delta M = 66.7 45.78 \approx 21 \text{ MeV/c}^2$?
 - Answer: Decay is suppressed by a factor \sim 14 due to the reduced phase space.
- What about the B_{s1} meson? If it is produced at sufficient rate, there should be a second peak below $\Delta M \approx 21 \text{ MeV/c}^2$: try fitting a second peak to the mass distribution...
- $\Delta M(B_{s1}) = 11.5 \pm 1.4 \text{ MeV/c}^2$
- $N(B_{s1}) = 25 \pm 10$ events
- Fit Significance: < 3σ (comparing values of -log(L) with and without signal contribution)
- ⇒Not a statistically significant signal (yet!), although CDF also see a signal here.

Systematic Uncertainties

The effect of various sources of systematic error were measured:

Source	$\delta M(B_{s2}^*)$ (MeV/c2)	δN
parameterization	0.0	3
Bin widths/positions	0.3	7
Value of Γ	0.3	5
PDG mass uncertainties	0.5	0
Momentum scale uncertainty	0.1	0
Mass Resolution Uncertainty	0.1	3
Total	0.7	10

The fit is repeated without the 10% increase in the Gaussian widths $\sigma(\text{wide})$ and $\sigma(\text{narrow})$, to test the effect of the correction of data/MC disagreement. A 100% systematic uncertainty is assigned to the effect of this refit on the parameters.

Scale factor 'k' fixed at like-charge value

Assumption $\Gamma(B_{s2}^*) = 1.0$ tested by using a number of small widths in the fit

Uncertainties quoted on the PDG errors of B⁺ and K⁻ are included as systematic errors on the absolute B_{s2}* mass.

A 100% systematic uncertainty is assigned to the upward shift of the Bs2* mass, used to correct of the effect of the D0 momentum scale issue.

$$M(B_{s2}^{*}) = 5839.6 \pm 1.1 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \text{ MeV/c}^{2}$$

 $N(B_{s2}^{*}) = 125 \pm 25 \text{ (stat.)} \pm 10 \text{ (syst.)}$

B_{s2}* Relative Production Rate

From the relative B_{s2}^*/B^+ detection efficiency (measured from Simulation), and the number of B^+ and B_{s2}^* events detected, a measurement is made of the relative production rate:

- $N(B_{s2}^*) = 125 \pm 25 \text{ (stat.)} \pm 10 \text{ (syst.)}$
- $N(B^+) = 20915 \pm 293 \text{ (stat.)} \pm 200 \text{ (syst.)}$
- $Eff(B_{s2}^*) / Eff(B^+) = (51.8 \pm 4.4) \%$

Thus relative production rate of B_{s2}* mesons into *charged* kaon channels is:

•
$$R(b \rightarrow B_{s2}^{*} \rightarrow B^{+}K^{-}) / R(b \rightarrow B^{+}) = [1.15 \pm 0.23 \text{ (stat)} \pm 0.13 \text{ (syst)}] \%$$

This is the first (and currently only) measurement of the production rate of the B_{s2}^* . Aside from its inherent value as a test of theoretical predictions, it is valuable in understanding B^+ composition in future mixing studies.

Summary

- The orbitally-excited B_{s2}^* meson has been observed for the first time, simultaneously by D0 and CDF. This follows last year's first observations of B_2^* and B_1 (the equivalent states in the (bd) quark system) by D0.
- The mass and production rate are calculated to be:
 - $M(B_{s2}^*) = 5839.6 \pm 1.1 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \text{ MeV/c}^2$
 - $R(b \rightarrow B_{s2}^{*} \rightarrow B^{+}K^{-}) = [1.15 \pm 0.23 \text{ (stat)} \pm 0.13 \text{ (syst)}] * R(b \rightarrow B^{+}) \%$
- No conclusive evidence is found for the presence or absence of a B_{s1} signal, although CDF recently reported strong evidence of a resonance at the same mass.
- This analysis was published in Phys. Rev. Lett. (Vol. 100, No. 8) on 28th February 2008:

http://link.aip.org/link?prl/100/082002

Thanks for listening!

Comparison with B** states:

- $N = 662 \pm 91$ Events
- $\Gamma = 10 \text{ MeV/c}^2 \text{ fixed}$

Masses and width:

•
$$M(B_1) = 5720.6$$

 $\pm 2.4 \text{ (stat)}$
 $\pm 1.3 \text{ (syst) MeV/c}^2$

•
$$M(B_2^*) = 5746.8$$

 $\pm 3.1 \text{ (stat)}$
 $\pm 0.9 \text{ (syst) MeV/c}^2$

Branching ratios and relative production rate:

- $Br(B_1^* \to B^*\pi) / Br(B_J \to B^{(*)}\pi) = 0.477 \pm 0.069 \text{ (stat)} \pm 0.062 \text{ (syst)}$
- $Br(B_2^* \to B^*\pi) / Br(B_2^* \to B^{(*)}\pi) = 0.475 \pm 0.095 \text{ (stat)} \pm 0.069 \text{ (syst)}$
- $R(b \rightarrow B^0_J \rightarrow B^{(*)}\pi)/R(b \rightarrow B^+) = 13.9 \pm 1.9 \text{ (stat)} \pm 3.2 \text{ (syst) } \%$

