Depolarization effects at the IP of a linear collider

Tony Hartin – John Adams Institute

- MOTIVATION: There is a physics requirement to produce polarized e+e- beams at a linear collider AND to know the actual state of polarization need to know the extent of depolarization
- Review sources of depolarization and the equations which describe depolarization at the IP (T-BMT and the Sokolov-Ternov equations)
- Introduce full quantum treatment of beamstrahlung process by solving the Dirac equation in the field of the e+e- bunches
- Derive Sokolov-Ternov equation using Dirac equation solutions in external field (Volkov solutions) to determine approximations
- Discuss extension of beam field effects to 4-fermion processes
- Describe analytic calculation of 2nd order coherent processes
 Daresbury 1.4.2008

Polarization at a linear collider – physics requirements

- Precision physics eg. $e+e-\rightarrow Z \rightarrow f f$ at the Z pole requires left right assymetry $\Delta A_{LR} < 10^{-4}$ Can only achieved by the Blondel scheme and polarized positron beam up to 60% required
- Polarised beams can increase effective luminosity by up to 50% by suppressing backgrounds
- Precision physics also requires uncertainty on luminosity-weighted polarisation to be ≤0.1% We know depolarization from initial simulations to be
 - 0.1% due to storage ring, linac and bds
 - ~0.1% due to beam-beam processes at the IP
- Still need to reduce uncertainty examine IP depolarization at the IP due to the effect of the strong bunch fields

Fermion spin

- Electrons of momentum p and spin s are described by spinors u(p,s)
- In the electron rest frame s is spatial (0,s') and is lorentz boosted to a frame with electron momentum p by

$$S^{\mu} = \left(\frac{\widetilde{p}.\widetilde{s}'}{m_0}, \widetilde{S}' + \frac{\widetilde{s}'.\widetilde{p}}{m_0(E+m_0)}\widetilde{p}\right)$$

Spin is normalised and orthogonal p^µ

• Spin projection operators $\Sigma(s)$ suppress unwanted spin states and allow the transition rates of quantum processes of specific spin to be calculated using the usual trace sum.

$$\Sigma(s) = \frac{1}{2}(1 + \gamma_5 s)$$

$$\Sigma(s)u(p, +s) = u(p, +s) , \Sigma(s)u(p, -s) = 0$$

Depolarization at the IP

 There is depolarization (spin flip) due to the QED process of beamsstrahlung, given by the Sokolov-Ternov equation

$$dW = -i \frac{\alpha m}{\sqrt{3}\pi y} \left[\int_{z}^{\infty} K_{5/3}(z) dz + \frac{x^{2}}{1-x} K_{2/3}(z) \right] dx$$

$$where \quad z = \frac{2}{3\nu \omega \epsilon_{i}} \frac{\omega_{f}}{\epsilon_{i} - \omega_{f}}$$

 The fermion spin can also precess in the bunch fields. Equation of motion of the spin given by the T-BMT equation

$$\frac{dS}{dt} = -\frac{e}{m\gamma} [(\gamma a + 1) \mathbf{B} - a(\gamma - 1) (\mathbf{B} \cdot \hat{\mathbf{p}}) \hat{\mathbf{p}}] \times \tilde{S}$$

• At the IP, the anomalous magnetic moment subject to radiative corrections in the presence of the bunch field

Parameter set	Deponit ration ΔP_{lw}		
	T-BMT	S-T	tota1
Nominal	0.08%	0.02%	0.10%
low Q	0.04%	0.02%	0.06%
large Y	0.17%	0.02%	0.19%
low P	0.15%	0.09%	0.24%
TESLA	0.11%	0.03%	0.14%

Classical spin prece in inhomogeneous external fields: T-BMT equation.

Sokolov-Ternov equation in more detail

 Derivation of S-T in the literature usually done with the semiclassical theory of Baier Katkov et al

$$\frac{\hbar \, \omega_0}{\epsilon_p} = \frac{B}{B_c} \left(\frac{m}{\epsilon_p}\right)^2$$

The energy levels of an ultrarelativistic electron in a magnetic field are very close together, so assume motion is classical i.e. Operators of the dynamical variables of the electron commute

- Would like to repeat using a more general technique a full QED calulation using (Vokov) solutions of the Driac equation in the bunch field
- So, will derive Sokolov-Ternov using Volkov solutions to obtain full expression for beamstrahlung
- As a check we will make sure that the full expression reduces to the Sokolov-Ternov and discover the approximations required in order to

Solution of Dirac equation in beam field A^e

- External field described by its 4-momentum (ω,k) , 4-potential A^e and field intensity $v^2=e|A^e|/mc^2$.
- Gauge condition allows A^e(0,a) and (a.k),(k.k)=0

$$[(p-eA^{e})^{2}-m^{2}-\frac{ie}{2F_{\mu\nu}^{e}}\sigma^{\mu\nu}]\psi_{V}(x,p)=0$$

- Look for a solution of the form: $\psi_V(x, p) = u_s(p)F(\phi)$
- Substitution of the general solution for ψ_V yields a first order d.e. whose solution can be expanded in powers of k,A^e terms > O(1) are zero

$$\left|\psi_{V}(x,p)=\left[1+\frac{e}{2(kp)}\mathcal{K}A^{e}\right]\exp\left[F(k,A^{e})\right]e^{-ipx}u_{s}(p)$$

The Volkov solution in more detail

$$\psi_{V}(x,p)=\left[1+\frac{e}{2(kp)}kA^{e}\right]\exp\left[F(x,p,k,A^{e})\right]e^{-ipx}u_{s}(p)$$

make Fourier transform to get linear term in

$$\int dr \exp[-i(r+v^2/kp)kx]F_2(p,k,A^e)$$

r term interpreted as a contribution from r external field photons (r can be -ve!)

v² term is a shift in electron momentum

non-external field Dirac solution

for ILC parameters

$$\frac{\omega}{m} \approx 0.06$$
 , $v^2 = \frac{e|A^e|}{m} \approx 1$

so for large E_p second term can be neglected

Volkov soln represented in Feynman diagrams by double straight lines IOP HEPP 1.4.2008

Tony Hartin

Deriving the Sokolov-Ternov equation

Sokolov-Ternov equation can be written down using the 'operator method' of Baier et al

$$dW = -i \frac{\alpha m}{\sqrt{3}\pi y} \left[\int_{z}^{\infty} K_{5/3}(z) dz + \frac{x^2}{1-x} K_{2/3}(z) \right] dx \quad where \quad z = \frac{2}{3\nu \omega \epsilon_i} \frac{\omega_f}{\epsilon_i - \omega_f}$$

but, more generally can be obtained within limits using full Volkov solutions

lets just try to get (discovering required approximations along the way)

$$(\epsilon_f, p_f)$$

$$(\omega_f, k_f)$$

$$(\epsilon_f, p_i)$$

$$(\epsilon_f, p_i)$$

$$d\sigma_{fi} = \frac{1}{v(2\pi)^2} \frac{m^2}{4\epsilon_i \omega_i} \delta(P_i - P_f) \overline{\sum_i} \sum_f |T_{fi}|^2 \frac{dp_f dk_f}{\epsilon_f \omega_f}$$

- •Matrix element contains one volkov solution per Feynman diagram order, so a product of solutions for S-T
- phase integral also contains an integration over the contribution from the bunch field

(Partial) S-T derivation (continued)

constant crossed field:

$$A^{e}_{\mu}(x) = a_{1\mu}(kx)$$

 $(a_{1}a_{1}) = -a^{2}$
 $(a_{1}k) = 0$

Simplification 1: $k \parallel p$ so that $(a_1p)=0$

$$\begin{split} \Psi_p^V(x) &= E_p(x) \; u_p \\ E_p(x) &= \left[1 + \frac{e}{2(kp)} k \phi_1(kx)\right] \\ &\times \; \exp\left(-iqx + i\frac{e^2a^2}{2(kp)}(kx) - i\frac{e(a_1p)}{2(kp)}(kx)^2 - i\frac{e^2a^2}{6(kp)}(kx)^3\right) \end{split}$$
 where
$$q = p + \frac{e^2a^2}{2(kp)}k$$

$$F_{1,r} = \int_{-\infty}^{\infty} t \exp\left[i(r+Q)t - iQ\frac{t^3}{3}\right] = 2\pi i Q^{-\frac{2}{3}} \operatorname{Ai}'(z)$$
 where
$$Q = v^2 \frac{(kk_f)}{(kp_i)((kp_i) - (kk_f))}$$

$$z = -(r+Q)Q^{-\frac{1}{3}}$$

$$Q = v^{2} \frac{(kk_{f})}{(kp_{i})((kp_{i}) - (kk_{f}))}$$

$$z = -(r+Q)Q^{-\frac{1}{3}}$$

Simplification 2: $|\mathbf{k}|| - |\mathbf{k}_f|$ and $|\mathbf{\epsilon}_i| >> m_e$ then $Q = \frac{v^2}{\omega \epsilon_i} \frac{\omega_f}{\epsilon_i - \omega_f}$

- $\int (P.I.) dr$ yields $r \rightarrow Q$
- $Q^{-2/3}$ Ai'($Q^{-2/3}$)= $K_{2/3}(2Q/3)$

$$(S.T.)z = \frac{2}{3\omega\epsilon_i} \frac{\omega_f}{\epsilon_i - \omega_f} \quad (volkov)z = \frac{2}{3(kp_i)} \frac{(kk_f)}{(kp_i) - (kk_f)}$$

4-fermion IFQED process

- To do bunch field effect properly replace all fermion lines by Volkov solutions
- 4th order external field process is intimidating so look for an 'external field' EPA

The dependency on fermion momenta have to be modified $P_{\mu} \rightarrow P_{\mu} + k_{\mu} v^2/2(kp)$ and $P^2 \rightarrow P^2 + v^2$

$$\mathrm{d}\sigma = \frac{\alpha}{4\pi^2|q^2|} \left[\frac{(qP)^2 - q^2P^2}{(pP)^2 - p^2P^2} \right]^{1/2} (2\rho^{++}\sigma_\mathrm{T} + \rho^{00}\sigma_\mathrm{S}) \, \frac{\mathrm{d}^3p'}{E'}$$

- So assuming EPA can still be used we are left with the 1st order external field process (Sokolv-Ternov). Known to be determined by the intensity of the bunch field *Y*
- •The 2nd order external field processes need special treatment. Propagators can reach the mass shell, the x-sections can exceed S-T and the effect does not necessarily have a simple relationship with Y

 IOP HEPP 1.4.2008

2nd order external field process: Coherent Breit-Wheeler (CBW) process

- 2nd order process contains twice as many Volkov E_p
- Double integrals over products of 4 Airy functions mathematical challenge!
- spin structure same as ordinary Breit-Wheeler

fermions recieve a mass shift due to bunch field and the propagator can reach mass shell whenever $r\omega \sim \omega_b$ IOP HEPP 1.4.2008

Tony Hartin

Calculation of Resonance widths

- The Electron Self Energy must be included in the Coherent Breit-Wheeler process
- This is a 2nd order IFQED process in its own right.
- Renormalization/Regularization reduces to that of the non-external field case

- The Electron Self Energy in external CIRCULARLY POLARISED e-m field originally due to Becker & Mitter 1975 for low field intensity parameter (ea/m)². Has been recalculated for general field intensity parameter
- ESE in external CONSTANT CROSSED field is due to Ritus, 1972
- Optical theorem: the imaginary part of the ESE has the same form as the Sokolov-Ternov equations

Summary

- We want highly polarized beams at a linear e+e- collider.
- We want to know precisely what the state of polarization is and consequently the depolarization at the IP
- The Sokolov-Ternov equation is contains various approximations concerning particle energies and scattering angles
- Full quatum treatment of beamstrahlung involves Dirac equation solutions for fermions in the external field
- Calculating the beamstrahlung process using the full solutions reveals the approximations made in the Sokolov-Ternov equation
- To treat bunch field effects consistently we should modify 4-fermion processes by replacing all fermion lines by full Volkov solutions
- EPA has to be studied for validity when external fields are included
- 2nd order IFQED Coherent Breit-Wheeler discussed. Calculation has some mathematical challenges