An unbinned method to measure FBA of the $\mathbf{B}_{\mathbf{d}} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}$decay on LHCb

F. Marinho

Annual Meeting of the High Energy Particle Physics Group - 31 March - 2 April 2008 - Lancaster - 2008

Outline

- Introduction

Rare B Decays
Why Bd $\rightarrow \mathbf{K}^{*} \mu+\mu-$?

- Forward-Backward Asymmetry
- Unbinned Method
- Results

Rare Decays

LHCb Physics:
$C P$ violation measurements in the \boldsymbol{b} sector and search for rare B decays
Flavor Changing Neutral Current processes are good to test SM and to look for New Physics

- These decays occur via box or penguin diagrams in the SM
- New Physics can possibly be seen at the same level of SM
- Allow indirect search of new particles
$\mathbf{b} \rightarrow \mathbf{s l}^{+} \mathbf{l}^{-}$:
$\mathbf{B}_{\mathbf{d}} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}, \mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \mu^{+} \mu^{-}, \mathbf{B}_{\mathbf{d}} \rightarrow \mathbf{K}^{*} \mathbf{e}^{+} \mathbf{e}^{-}, \mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \mathbf{e}^{+} \mathbf{e}^{-}$
(Branching ratio, angular distributions)
$\mathbf{b} \rightarrow \mathbf{s} \gamma:$

$$
\mathrm{B} \rightarrow \mathbf{K}^{*} \gamma, \mathrm{~B}_{\mathrm{s}} \rightarrow \Phi \gamma \text { (CP violation) }
$$

$\mathbf{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$(Branching ratio)

The $\mathbf{B}_{\mathrm{d}} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}$Decay

- Rare FCNC with predicted $B R=(1.19 \pm 0.39) \times 10^{-6}$ (NNLO) Already measured at B factories $-\mathrm{BR}=(1.22+0.38-0.32) \times 10^{-6}$
- Interesting place to confirm SM and to look beyond
- New physics signature can be quite clear

$\overline{\bar{q}} \quad \bar{q}$
Assortment of measurables whose dependence on $\mu^{+} \mu^{-}$mass can reveal new physics
- Angular distributions: Forward-Backward asymmetry and its zero point
- Wilson coefficients ($\mathrm{A}_{10} / \mathrm{A}_{7}$ and $\mathrm{A}_{9} / \mathrm{A}_{7}$)

$$
\begin{array}{ll}
\bar{q} & \bar{q} \\
\text { endence } & \begin{array}{c}
\text { - Forbidden at tree level } \\
\text { - Penguin and Box diagrams }
\end{array}
\end{array}
$$

LHCb competitive with Babar and Belle after few weeks of data taking ($\sim 0.07 \mathrm{fb}^{-1}$)

The $\mathbf{B}_{\mathrm{d}} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}$Decay

- Rare FCNC with predicted $B R=(1.19 \pm 0.39) \times 10^{-6}$ (NNLO) Already measured at B factories $-B R=(1.22+0.38-0.32) \times 10^{-6}$
- Interesting place to confirm SM and to look beyond

- Angular distributions: Forward-Backward asymmetry and its zero point
- Wilson coefficients ($\mathrm{A}_{10} / \mathrm{A}_{7}$ and $\mathrm{A}_{9} / \mathrm{A}_{7}$)

Forward Backward Asymmetry

Counting events according to the angle between the positive lepton and the \mathbf{B} meson on the dimuon rest frame.

Kernel density estimation

How to estimate accurately the density function of an observable (dimuon mass, FBA,...) ?
\Rightarrow Kernel density (aka unbinned) method converges fast providing a continuous curve
\Rightarrow Probability density function f obtained using a Gaussian kernel:
$f\left(m_{\mu \mu}^{2}\right)=\frac{1}{N \sqrt{2 \pi} h_{m_{\mu \mu}^{2}}} \sum_{i=0}^{N} \exp \left(-\frac{1}{2}\left(\frac{m_{\mu \mu}^{2}-m_{\mu \mu}^{2 i}}{h_{m_{\mu \mu}^{2}}^{2}}\right)^{2}\right)$

All events contribute to the distribution estimate with more or less weight.

Forward-Backward asymmetry

Once the mass distribution for the forward and backward events is calculated one can rewrite the number of events and calculate the FBA as:

$$
\operatorname{FBA}\left(m_{\mu \mu}^{2}\right)=\frac{\operatorname{Total}_{\text {forward }} \mathrm{f}_{\text {forward }}\left(m_{\mu \mu}^{2}\right)-\operatorname{Total}_{\text {backward }} \mathrm{f}_{\text {backward }}\left(m_{\mu \mu}^{2}\right)}{\operatorname{Total}_{\text {forward }} \mathrm{f}_{\text {forward }}\left(m_{\mu \mu}^{2}\right)+\operatorname{Total}_{\text {backward }} \mathrm{f}_{\text {backward }}\left(m_{\mu \mu}^{2}\right)}
$$

Unbinned method converges to the correct FBA curve

Using 100 data sets each $\sim 2 \mathbf{f b}^{-1}$

Forward-Backward asymmetry

- FBA zero point directly extracted from curve
- Uncertainties calculated by sampling the dimuon mass distributions
- Uncertainty can be calculated from single data sample using jackknife method (being implemented)
$\mathrm{S}_{0}=4.04 \pm 0.40 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
Compatible with binned method and our previous version with fit
J. Dickens, CERN-LHCb-2007-039

Acceptance Effects

Reconstruction and selection affect the Forward Backward Asymmetry

- Evaluate FBA with detector simulation + selection
- ~425k events - (about 8fb ${ }^{-1}$)
- No trigger simulation included
- Goal was to evaluate which selection cuts contribute to difference between curves

\Rightarrow The zero point difference is about $0.5 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
\Rightarrow Maximum FBA amplitude difference $1.8-2.0 \sigma\left(8 \mathrm{fb}^{-1}\right)$

Acceptance Effects

Mainly due to single μ cuts

Summary and Perspectives of $\mathbf{B}_{\mathbf{d}} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}$Analysis

- Unbinned method developed
- Simple method provides good convergence with low number of events
- The zero point sensitivity is $\sim 4.0 \pm 0.4 \mathrm{GeV} / \mathrm{c}^{2}$
- Reconstruction and selection affect Forward Backward Asymmetry
- Significant acceptance effects due to single muon cuts

Possible calibration with $\mathrm{J} / \mathrm{Psi} \rightarrow \mu^{+} \mu^{-}$samples

- Studies on background subtraction are being carried out.

