SHERPA EVENT GENERATOR FOR THE LHC

Stefan Höche ${ }^{1}$
Institute for Particle Physics and Phenomenology
Durham University

${ }^{1}$ for Sherpa: Tanju Gleisberg, SH, Frank Krauss, Steffen Schumann, Marek Schönherr, Frank Siegert \& Jan Winter

THE SHERPA FRAMEWORK

 But what's in the box in general ?

- Matrix element (ME) generators
- AMEGIC++
fiex COMIX (~version 1.2)
- Shower generators
- Parton shower (PS)

Hive CS-subtraction based shower

- Merging of ME \& PS (CKKW)
- Standard CKKW

CKNW for heavy flavours

- Cluster fragmentation

- Hadron decay module
- Multiple parton interaction generator

ME-PS MERGING \& HEAVY FLAVOURS

Consider top pair production at the LHC

- Narrow width approximation \rightarrow full ME factorises into production and decay parts

Schematically: $\mathcal{A}^{(\mathbf{n})}=\mathcal{A}_{\text {prod }}^{\left(\mathbf{n}_{\text {rod }}\right)} \otimes \prod_{\mathrm{i} \in \text { decays }} \mathcal{A}_{\text {dec }, \mathbf{i}}^{\left(\mathrm{n}_{\mathbf{i}}\right)}$
How is it simulated in Sherpa?

- ME generator AMEGIC++ provides decay chains (projection onto relevant diagrams)

- PS generator APACIC++ provides production \& decay shower off heavy partons (+ standard showering)
- CKKW ME-PS merging is applied separately and independent within production and each decay
... what does that mean ?

MERGING OF ME \& PS: CKKW

Matrix Elements

Advantage

- Exact to fixed order
- Include all interferences

Drawback

- Calculable only for low FS multiplicity ($\mathrm{n} \leq 6-8$)

Parton Showers

Advantage

- Resum all (next-to) leading logarithms to all orders

Drawback

- Interference effects only through angular ordering

Combine both approaches: CKKW

- Good description of hard radiation (ME)
- Correct intrajet evolution (PS)

Strategy: Separate phase space Jet production region \rightarrow ME

- Intrajet evolution region \Rightarrow PS
- Free parameter: Separation cut $Q_{\text {cut }}$

JHEP 08(2002)015; JHEP 11(2001)063

(K_{T}-type jet measure)

TOP PAIR PRODUCTION @ LHC

- Sanity check of the procedure
- $\mathrm{Q}_{\text {cut - variation in production }}$

- Why it is necessary ...
- \mathbf{p}_{\perp} of $\mathbf{t \overline { t }}$ pair

Stefan Höche, IOP Meeting Lancaster, 2.4.2008

HIGH-MULTIPLICITY ME'S: COMI

- Revisited "old-fashioned" Berends-Giele recursion JHEP 08(2006)062
\Rightarrow New ME generator COMI
- Fully general implementation of SM interactions What you could do, for example:
- pp $\rightarrow \mathrm{W} / \mathrm{Z}+\mathrm{N}$ jets where so far N up to 6 (all partons !)
- $\mathrm{pp} \rightarrow \mathbf{N}$ jets $+\mathbf{t}\left[\mathbf{W}^{+} \mathbf{b}+\mathbf{M}\right.$ jets $] \overline{\mathbf{t}}\left[\mathbf{W}^{-} \overline{\mathbf{b}}+\mathbf{M}\right.$ jets $]$ where so far $\{\mathrm{N}, \mathrm{M}\}$ up to $\{2,1\}$
- $\mathrm{pp} \rightarrow \mathrm{N}$ gluons where N up to 12 (QCD benchmark)
- pp $\rightarrow \mathrm{N}$ jets where N up to 8 (all partons !)
- Key point: Vertex decomposition of all four-particle vertices (Growth in computational complexity for CDBG determined solely by number of external legs at vertices)
- The ME is ticked off, but how about the phasespace ?
\Rightarrow Recursive method analogous to ME calculation
Basic Idea: Nucl. Phys. B9 (1969) 568

COMI : PERFORMANCE

Setup: http:// mlm.home.cern.ch/mlm/mcwshop03/mcwshop.html

- Performance in QCD processes (error in brackets)

$\sigma[\mu \mathrm{b}]$	Number of jets						
jets	2	3	4	5	6	7	8
Comix	$331.2(4)$	$22.78(6)$	$4.95(3)$	$1.234(4)$	$0.355(2)$	$0.099(4)$	$0.047(1)$
ALPGEN	$331.7(3)$	$22.49(7)$	$4.81(1)$	$1.176(9)$	$0.330(1)$		
AMEGIC ++	$331.0(4)$	$22.78(6)$	$4.95(2)$				

$\sigma[\mu \mathrm{b}]$	Number of jets						
$b \bar{b}+$ QCD jets	0	1	2	3	4	5	6
Comix	$470.8(5)$	$8.83(2)$	$1.826(8)$	$0.459(2)$	$0.151(2)$	$0.0544(6)$	$0.023(2)$
ALPGEN	$470.6(6)$	$8.83(1)$	$1.822(9)$	$0.459(2)$	$0.150(2)$	$0.053(1)$	$0.0215(8)$
AMEGIC ++	$470.3(4)$	$8.84(2)$	$1.817(6)$				

$\sigma[\mathrm{pb}]$	Number of jets						
$t \bar{t}+$ QCD jets	0	1	2	3	4	5	6
Comix	$755.0(8)$	$749(1)$	$523(1)$	$311.7(8)$	$171.5(6)$	$90.6(5)$	$50(1)$
ALPGEN	$755.4(8)$	$748(2)$	$518(2)$	$310.9(8)$	$170.9(5)$	$87.6(3)$	$45.1(8)$
AMEGIC ++	$754.4(3)$	$747(1)$	$520(1)$				

COMI : PERFORMANCE

- Efficiencies: LHC setup

Cuts: $\mathbf{6 6} \mathrm{GeV} \leq \mathrm{m}_{\overline{1} 1} \leq 116 \mathrm{GeV}$, CDF Run II K_{T}-algo @ 20 GeV

Process	Efficiency
$\mathrm{Z}+0$ jet	8.50%
$\mathrm{Z}+1$ jet	1.05%
$\mathrm{Z}+2$ jets	0.60%
$\mathrm{Z}+3$ jets	0.15%
Process	Efficiency
$\mathrm{W}+0$ jet	19.13%
$\mathrm{~W}+1$ jet	1.50%
$\mathrm{~W}+2$ jets	0.48%
$\mathrm{~W}+3$ jets	0.16%

Also new: HAAG-based QCD integrator for colour sampling

CSI - Colour Sampling Integrator

SUMMARYAND OUTLOOK

Sherpa is much more than what I talked about ...
Sherpas and collaborators currently work on:

- Hadron decays including B-Mixing (version 1.1)
- Preparing the two new showers for ME-Shower merging systematics studies with different shower prescriptions
- BSM beyond the MSSM:

Little Higgs, MWTC \rightarrow J. Ferland (ATLAS, Montreal), ...

- Interfaces to Athena \rightarrow J. Ferland (ATLAS, Montreal) and CMS software \rightarrow M. Merschmeyer (CMS, Aachen)
- Grid support: At the IPPP, we run Sherpa on the Grid ! Multithreading: Speed up the calculation with more CPU's!

Next release: Version 1.1, ~April 2008

Updates on Sherpa can be found on

WWW.SHERPA-MC.DE

E-mail us at
INFO@SHERPA-MC.DE

CS-SUBTRACTION BASED SHOWER

F.Krauss, S.Schumann, JHEP03(2008)038

- Catani-Seymour subtraction terms
\Rightarrow General framework for QCD NLO calculations
- Splitting of parton $\tilde{\mathbf{j}}$ into partons i and j , spectator k
- Advantages over Parton Shower
\rightarrow Full phasespace coverage
\rightarrow Good approximation of ME
\rightarrow Better analytic control

e.g. final-final splitting:
- Implementation into Sherpa for the general case, i.e. final-final initial-final and initial-initial dipoles

$$
\begin{aligned}
& \left\langle\mathbf{V}_{\mathbf{q}_{\mathrm{i}}, \mathrm{~g}_{\mathrm{j}}, \mathrm{k}}\right\rangle\left(\tilde{\mathbf{z}}_{\mathbf{i}}, \mathrm{y}_{\mathbf{i j}}, \mathrm{k}\right)= \\
& \mathbf{C}_{\mathbf{F}}\left(\frac{2}{1-\tilde{\mathrm{z}}_{\mathrm{i}}+\tilde{\mathrm{z}}_{\mathrm{i}} \mathrm{y}_{\mathrm{ij}, \mathrm{k}}}-\left(1+\tilde{\mathrm{z}}_{\mathrm{i}}\right)\right) \\
& y_{i j, k}=\frac{p_{i} p_{j}}{p_{i} p_{k}+p_{j} p_{k}+p_{i} p_{j}} \\
& z_{i}=\frac{p_{i} p_{k}}{p_{i} p_{k}+p_{j} p_{k}}
\end{aligned}
$$

CS-SUBTRACTION BASED SHOWER

F.Krauss, S.Schumann, JHEP03(2008)038

- Results for pp \rightarrow jets Phys. Rev. D50 (1994) 5562

COMI : PHASESPACE RECURSION

Nucl. Phys. B9 (1969) 568

- State-of-the art approach for general phasespace generation:

Factorise PS using

$$
\mathrm{d} \boldsymbol{\Phi}_{\mathbf{n}}(\mathbf{a}, \mathbf{b} ; \mathbf{1}, \ldots, \mathbf{n})=\mathrm{d} \boldsymbol{\Phi}_{\mathbf{m}}(\mathbf{a}, \mathbf{b} ; \mathbf{1}, \ldots, \mathbf{m}, \bar{\pi}) \mathrm{d} \mathbf{s}_{\pi} \mathrm{d} \boldsymbol{\Phi}_{\mathbf{n}-\mathbf{m}}(\pi ; \mathbf{m}+\mathbf{1}, \ldots, \mathbf{n})
$$

Remaining basic building blocks of the phasespace:
\Rightarrow "Propagators" $\mathbf{P}_{\pi}=\left\{\begin{array}{cc}1 & \text { if } \boldsymbol{\pi} \text { or } \overline{\boldsymbol{\pi}} \text { external } \\ \mathrm{d} s_{\boldsymbol{\pi}} & \text { else }\end{array}\right.$
Decay "vertices"
Arrows \rightarrow Momentum flow

COMI : PHASESPACE RECURSION

Basic idea: Take above recursion literally and "turn it around" S-channel phasespace (schematically)

$$
\begin{aligned}
& \mathrm{d} \Phi_{S}(\pi)=\left[\sum \alpha\left(S_{\pi}^{\rho, \pi \backslash \rho}\right)\right]^{-1} \\
& \quad \times\left[\sum \alpha\left(S_{\pi}^{\rho, \pi \backslash \rho}\right) S_{\pi}^{\rho, \pi \backslash \rho} \mathcal{P}_{\rho} \operatorname{d\Phi }_{S}(\rho) P_{\pi \backslash \rho} \mathrm{d} \Phi_{S}(\pi \backslash \rho)\right]
\end{aligned}
$$

T-channel phasespace (schematically)
Weights for adaptive multichanneling

$$
\begin{aligned}
& \mathrm{d} \Phi_{\mathrm{P})}^{(b)}(\alpha)=\left[\sum \alpha\left(T_{\alpha,}^{\pi, \overline{\alpha b \pi}}\right)\right]^{-1} \\
& \quad \times\left[\sum \alpha\left(T_{\alpha}^{\pi, \overline{\alpha b \pi}}\right) T_{\alpha}^{\pi, \overline{\alpha b \pi}} P_{\pi} \mathrm{d} \Phi_{S}(\pi) P_{\overline{\alpha b \pi}} \mathrm{~d} \Phi_{\Phi}^{(b)}(\alpha \pi)\right]
\end{aligned}
$$

"b" is fixed \rightarrow Every PS-weight is unique!
 Arrows \rightarrow Weight flow!

Factorial growth of PS-channels tamed

APACIC++: HEAVY QUARK PRODUCTION

- In quasi-collinear limit ($\mathrm{b} \leftrightarrow$ heavy quark) ME factorises

$$
|\mathbf{M}(\mathbf{b}, \mathbf{c}, \ldots, \mathbf{n})|^{2} \rightarrow|\mathbf{M}(\mathbf{a}, \ldots, \mathbf{n})|^{2} \frac{8 \pi \alpha_{\mathbf{s}}}{\mathbf{t}-\mathbf{m}_{\mathbf{a}}^{2}} \mathbf{P}_{\mathbf{a} \rightarrow \mathbf{b} \mathbf{c}}(\mathbf{z})
$$

- Virtuality ordered PS \rightarrow evolution variable t changes to $t-\mathbf{m}_{\mathbf{a}}^{2}$
- Splitting functions $\mathbf{P}_{\mathbf{a b}}(\mathbf{z})$ become those for massive quarks
Nucl. Phys. B627(2002)189

$$
\begin{aligned}
& \Rightarrow C_{F}\left(\frac{1+z^{2}}{1-z}-\frac{2 z(1-z) m^{2}}{q^{2}+(1-z)^{2} m^{2}}\right) \\
& \Rightarrow T_{R}\left(1-2 z(1-z)+\frac{2 z(1-z) m^{2}}{q^{2}+m^{2}}\right)
\end{aligned}
$$

- Cross-check: 2- and 3-jet fraction in $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{t} \overline{\mathbf{t}}$, PS vs. ME, weighted with NLL Sudakov form factors Phys. Lett. B576(2003)135

Stefan Höche, IOP Meeting Lancaster, 2.4.2008

APACIC++: HEAVY QUARK PRODUCTION

PS in production

- On-shell daughter partons \Rightarrow New decay kinematics via

Lorentz transformation Choice: Boost into new (daughter) cms

- FSR-like situation
- Evolution stops once diced virtuality reaches on-shell mass of heavy quark

PS in decay

- Off-shell daughter partons Decay kinematics need to be reconstructed
\Rightarrow Choice: Reconstruct in cms of decayed quark, such that $\overrightarrow{\mathbf{p}} /|\overrightarrow{\mathbf{p}}|$ is preserved
- ISR-like situation
- Evolution stops if \mathbf{p}_{\perp} reaches width of decaying quark

CKKW IN A NUTSHELL

- Define jet resolution parameter $\mathrm{Q}_{\text {cut }}$ (Q-jet measure)

JHEP 0111 (2001) 063 JHEP 0208 (2002) 015 \Rightarrow divide phase space into regions of jet production (ME) and jet evolution (PS)

- Select final state multiplicity and kinematics according to σ 'above' $\mathrm{Q}_{\text {cut }}$
- KT-cluster backwards (construct PS-tree) and identify core process
- Reweight ME to obtain exclusive samples at $Q_{\text {cut }}$
- Start the parton shower at the hard scale Veto all PS emissions harder than $Q_{\text {cut }}$

This yields the correct jet rates ! Simple example: 2 -jet rate in ee $\rightarrow \mathrm{qq}$

$$
\boldsymbol{R}_{2}(\boldsymbol{q})=\left(\Delta\left(Q_{\mathrm{cut}}, \mu_{\mathrm{hard}}\right) \frac{\Delta\left(q, \mu_{\mathrm{hard}}\right)}{\Delta\left(Q_{\mathrm{cut}}, \mu_{\mathrm{hard}}\right)}\right)^{2}
$$

