SHERPA EVENT GENERATOR FOR THE LHC

Stefan Höche¹ Institute for Particle Physics and Phenomenology Durham University

¹ for Sherpa: Tanju Gleisberg, SH, Frank Krauss, Steffen Schumann, Marek Schönherr, Frank Siegert & Jan Winter

This talk is not exhaustive 400 ... but focused on recent developmentsBut what's in the box in general? Matrix element (ME) generators AMEGIC++ COMIX (~version 1.2) Shower generators Parton shower (PS) CS-subtraction based shower Merging of ME & PS (CKKW) Standard CKKW CKKW for heavy flavours **Cluster fragmentation** Hadron decay module Multiple parton interaction generator

Consider top pair production at the LHC

Narrow width approximation
 → full ME factorises
 into production and decay parts

Schematically: $\mathcal{A}^{(n)} = \mathcal{A}_{\text{prod}}^{(n_{\text{prod}})} \otimes \prod_{i \in \text{decays}} \mathcal{A}_{\text{dec},i}^{(n_i)}$

How is it simulated in Sherpa?

- ME generator AMEGIC++ provides decay chains (projection onto relevant diagrams)
- PS generator APACIC++ provides production & decay shower off heavy partons (+ standard showering)
- CKKW ME-PS merging is applied separately and independent within production and each decay

... what does that mean ?

MERGING OF ME & PS: CKKW

Matrix Elements

Advantage

- Exact to fixed order
- Include all interferences
 Drawback
- Calculable only for low
 FS multiplicity (n≤6-8)

Parton Showers

Advantage

 Resum all (next-to) leading logarithms to all orders
 Drawback

Interference effects only

through angular ordering

Combine both approaches: CKKW

- Good description of hard radiation (ME)
- Correct intrajet evolution (PS)

Strategy: Separate phase space Jet production region ME

■ Intrajet evolution region → PS

Free parameter: Separation cut Qcut (K_T-type jet measure)

JHEP 08(2002)015; JHEP 11(2001)063

HIGH-MULTIPLICITY ME'S: COMIS

- Revisited "old-fashioned" Berends-Giele recursion JHEP 08(2006)062
 New ME generator COMIX
- Fully general implementation of SM interactions What you could do, for example:
 - $pp \rightarrow W/Z+N$ jets where so far N up to 6 (all partons !)
 - $pp \rightarrow N \text{ jets} + t [W^+b + M \text{ jets}] \overline{t} [W^-\overline{b} + M \text{ jets}]$ where so far {N,M} up to {2,1}
 - $pp \rightarrow N$ gluons where N up to 12 (QCD benchmark)
 - pp → N jets where N up to 8 (all partons !)
- Key point: Vertex decomposition of all four-particle vertices (Growth in computational complexity for CDBG determined solely by number of external legs at vertices)
- The ME is ticked off, but how about the phasespace ?
 Recursive method analogous to ME calculation Basic Idea: Nucl. Phys. B9 (1969) 568

COMIX: PERFORMANCE

Setup: <u>http://mlm.home.cern.ch/mlm/mcwshop03/mcwshop.html</u>

Performance in QCD processes (error in brackets)

σ [µb]	Number of jets						
jets	2	3	4	5	6	7	8
Comix	331.2(4)	22.78(6)	4.95(3)	1.234(4)	0.355(2) (0.099(4)	0.047(1)
ALPGEN	331.7(3)	22.49(7)	4.81(1)	1.176(9)	0.330(1)		
AMEGIC++	331.0(4)	22.78(6)	4.95(2)				

σ [µb]	Number of jets						
$b\bar{b} + QCD$ jets	0	1	2	3	4	5	6
Comix	470.8(5)	8.83(2)	1.826(8)	0.459(2)	0.151(2)	0.0544(6)	0.023(2)
ALPGEN	470.6(6)	8.83(1)	1.822(9)	0.459(2)	0.150(2)	0.053(1)	0.0215(8)
AMEGIC++	470.3(4)	8.84(2)	1.817(6)			S. C. S. S.	

σ [pb]		Number of jets					
$t\bar{t} + QCD$ jets	0	1	2	3	4	5	6
Comix	755.0(8)	749(1)	523(1)	311.7(8)	171.5(6)	90.6(5)	50(1)
ALPGEN	755.4(8)	748(2)	518(2)	310.9(8)	170.9(5)	87.6(3)	45.1(8)
AMEGIC++	754.4(3)	747(1)	520(1)		1.1.1		

COMIX: PERFORMANCE

 $\begin{array}{l} \mbox{Efficiencies: LHC setup} \\ \mbox{Cuts: 66 GeV} \leq m_{l\bar{l}} \leq 116 \, GeV, \\ \mbox{CDF Run II } K_T\mbox{-algo} @ 20 GeV \end{array}$

Process	Efficiency		
Z+0 jet	8.50%		
Z+1 jet	1.05%		
Z+2 jets	0.60%		
Z+3 jets	0.15%		
Process	Efficiency		
W+0 jet	19.13%		
W+1 jet	1.50%		
W+2 jets	0.48%		
W+3 jets	0.16%		

Also new: HAAG-based QCD integrator for colour sampling

Sherpa is much more than what I talked about ...

Sherpas and collaborators currently work on:

- Hadron decays including B-Mixing (version 1.1)
- Preparing the two new showers for ME-Shower merging
 systematics studies with different shower prescriptions
 BSM beyond the MSSM:
 - Little Higgs, MWTC

 J. Ferland (ATLAS, Montreal), ...
- Interfaces to Athena
 → J. Ferland (ATLAS, Montreal)
 and CMS software
 → M. Merschmeyer (CMS, Aachen)
- Grid support: At the IPPP, we run Sherpa on the Grid ! Multithreading: Speed up the calculation with more CPU's !

Next release: Version 1.1, ~April 2008

Updates on Sherpa can be found on

E-mail us at

WWW.SHERPA-MC.DE

INFO@SHERPA-MC.DE

CS-SUBTRACTION BASED SHOWER

F.Krauss, S.Schumann, JHEP03(2008)038

- Catani-Seymour subtraction terms
 General framework for QCD NLO calculations
- Splitting of parton \tilde{ij} into partons i and j, spectator k
- Advantages over Parton Shower
 Full phasespace coverage
 Good approximation of ME
 Better analytic control
- Implementation into Sherpa for the general case, i.e. final-final initial-final and initial-initial dipoles

F.Krauss, S.Schumann, JHEP03(2008)038

Results for $pp \rightarrow jets$ Phys. Rev. D50 (1994) 5562

Nucl. Phys. B9 (1969) 568

- State-of-the art approach for general phasespace generation: Factorise PS using
 - $\mathrm{d}\Phi_{\mathbf{n}}\left(\mathbf{a},\mathbf{b};\mathbf{1},\ldots,\mathbf{n}\right)=\mathrm{d}\Phi_{\mathbf{m}}\left(\mathbf{a},\mathbf{b};\mathbf{1},\ldots,\mathbf{m},\bar{\pi}\right)\,\mathrm{d}\mathbf{s}_{\pi}\,\mathrm{d}\Phi_{\mathbf{n}-\mathbf{m}}\left(\pi;\mathbf{m}+\mathbf{1},\ldots,\mathbf{n}\right)$
 - Remaining basic building blocks of the phasespace:

Arrows → Momentum flow

COMIX: PHASESPACE RECURSION

 $\hat{S}^{\,\rho,\pi\setminus
ho}_{\pi}$

 π

 $\hat{T}^{\pi,\overline{\alpha b\pi}}_{\alpha}$

 Basic idea: Take above recursion literally and "turn it around" S-channel phasespace (schematically)

 $d\Phi_{S}(\pi) = \left[\sum_{\alpha} \alpha \left(S_{\pi}^{\rho,\pi\setminus\rho}\right)\right]^{-1} \times \left[\sum_{\alpha} \alpha \left(S_{\pi}^{\rho,\pi\setminus\rho}\right) S_{\pi}^{\rho,\pi\setminus\rho} P_{\rho} d\Phi_{S}(\rho) P_{\pi\setminus\rho} d\Phi_{S}(\pi\setminus\rho)\right] -$

T-channel phasespace (schematically) Weights for adaptive multichanneling

"b" is fixed → Every PS-weight is unique !
Arrows → Weight flow !
Factorial growth of PS-channels tamed

- In quasi-collinear limit (b \leftrightarrow heavy quark) ME factorises $|\mathbf{M}(\mathbf{b}, \mathbf{c}, \dots, \mathbf{n})|^2 \rightarrow |\mathbf{M}(\mathbf{a}, \dots, \mathbf{n})|^2 \frac{8\pi\alpha_s}{\mathbf{t} - \mathbf{m}_a^2} \mathbf{P}_{\mathbf{a} \rightarrow \mathbf{b} \mathbf{c}}(\mathbf{z})$
- Virtuality ordered PS \rightarrow evolution variable t changes to $t m_a^2$
- Splitting functions P_{ab}(z) become those for massive quarks Nucl. Phys. B627(2002)189

$$\longrightarrow \mathbf{C}_{\mathbf{F}} \left(\frac{1+\mathbf{z}^2}{1-\mathbf{z}} - \frac{2\mathbf{z}(1-\mathbf{z})\mathbf{m}^2}{\mathbf{q}^2 + (1-\mathbf{z})^2\mathbf{m}^2} \right)$$

$$\Rightarrow \mathbf{T}_{\mathbf{R}} \left(\mathbf{1} - \mathbf{2}\mathbf{z}(\mathbf{1} - \mathbf{z}) + \frac{\mathbf{2}\mathbf{z}(\mathbf{1} - \mathbf{z})\mathbf{m}^2}{\mathbf{q}^2 + \mathbf{m}^2} \right)$$

Cross-check: 2- and 3-jet fraction in $e^+e^- \rightarrow t\bar{t}$, PS vs. ME, weighted with NLL Sudakov form factors Phys. Lett. B576(2003)135

APACIC++: HEAVY QUARK PRODUCTION

PS in production

- On-shell daughter partons
 New decay kinematics via Lorentz transformation Choice: Boost into new (daughter) cms
- FSR-like situation
- Evolution stops once diced virtuality reaches on-shell mass of heavy quark

PS in decay

- Off-shell daughter partons
 Decay kinematics need to be reconstructed
 - Choice: Reconstruct in cms of decayed quark, such that p/|p| is preserved
- ISR-like situation
- Evolution stops if p_⊥ reaches width of decaying quark

This yields the correct jet rates ! Simple example: 2-jet rate in ee \rightarrow qq $R_2(q) = \left(\Delta(Q_{\text{cut}}, \mu_{\text{hard}}) \frac{\Delta(q, \mu_{\text{hard}})}{\Delta(Q_{\text{cut}}, \mu_{\text{hard}})}\right)^2$