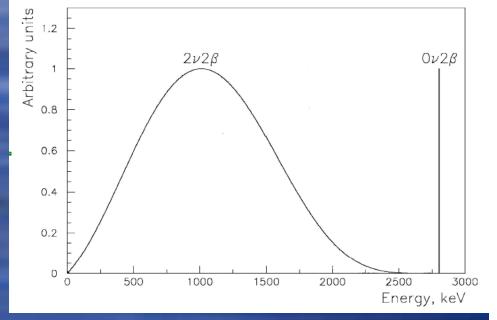

# Double Beta Decay of <sup>150</sup>Nd in the NEMO 3 Experiment

Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP meeting, Lancaster 31<sup>st</sup> March 2008

## **Double beta decay physics**





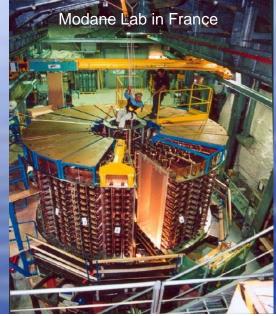

$$G_{1/2}^{2
u})^{-1} = G^{2
u} |M^{2
u}|^2$$

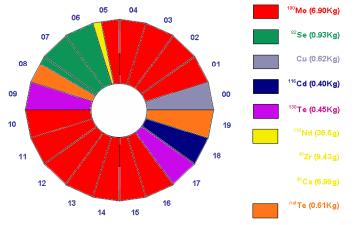
(7



- 2vββ forms irreducible background to 0vββ.
- Observation of 0vββ would prove neutrinos are Majorana particles.
- Half-life would give effective neutrino mass.



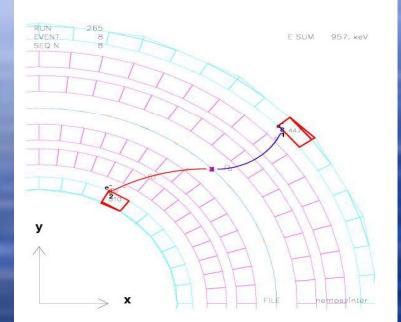

Nasim Fatemi-Ghomi, The University of Manchester, IOP HEPP meeting 2008


# Overview of the NEMO 3 detector

- Tracker plus calorimeter technique.
- Good particle identification: electron (e), photon (γ) and alpha (α).
- Cylindrical design, divided into 20 equal sectors.
- 10 kg of  $\beta\beta$  isotopes.
- Consists of four main parts: tracking chamber, calorimeter, source foils and shielding.

#### <sup>150</sup>Nd in NEMO3:

- <sup>150</sup>Nd has a high nuclear transition energy  $(Q_{\beta\beta}=3.367 \text{ MeV}).$
- Lower natural radioactivity background and large phase space factor (strong candidate for SuperNEMO).
- 37 g mass in NEMO 3 (compare to possible 100 kg in SuperNEMO).






Nasim Fatemi-Ghomi, The University of Manchester, IOP HEPP meeting 2008

## Selection criteria for 2e events

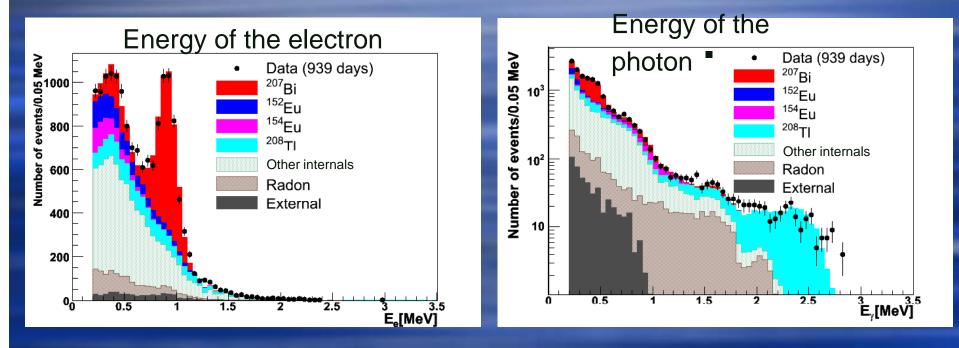
- Two tracks with negative charge associated with isolated scintillator hits.
- Energy deposit in each scintillator
   E > 0.2 MeV.
- Two tracks must have a common vertex in the <sup>150</sup>Nd source foil.
- Track length > 30cm.
- The tracks must go through one of the first two layers of tracking chamber.
- TOF cut in order to reject events coming from outside of foil.



## Background to double beta decay

- Two types of backgrounds: internal and external.
- Internal from contaminants inside the foil.
- External from radon and calorimeter PMTs.

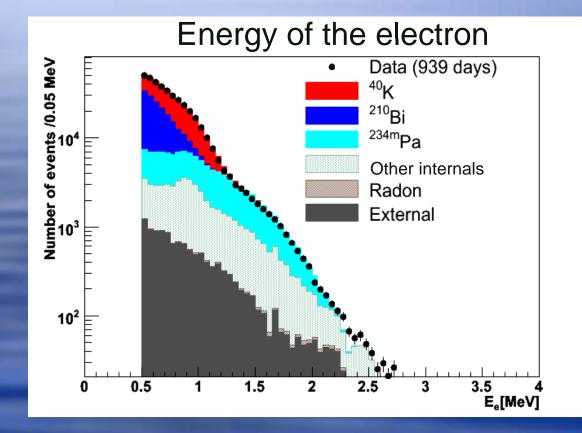



 Activity of the contaminants in <sup>150</sup>Nd measured by looking at two control channels:

- electron-photon ( $e\gamma$ )
- single electron (1e).

## ey control channel

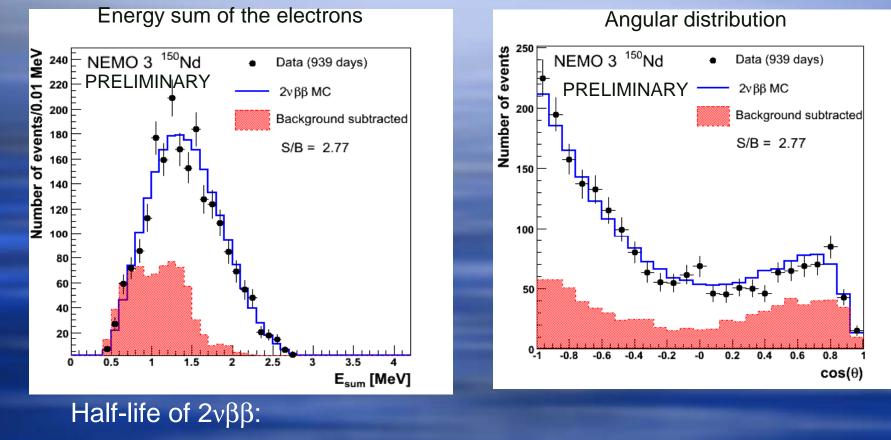
<sup>207</sup>Bi decays to an electron and a photon via conversion process.
 <sup>152</sup>Eu and <sup>208</sup>Tl decay to an electron and a photon via a beta decay and de-excitation of their daughter isotope.


#### Background MC fits data well in eγ control channel.



## Single electron control channel

<sup>40</sup>K, <sup>234m</sup>Pa and <sup>210</sup>Bi
 decay to an electron via
 beta decay.


 Background MC fits data well in single electron channel.



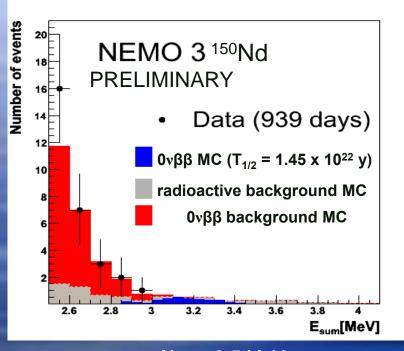
Nasim Fatemi-Ghomi, The University of Manchester, IOP HEPP meeting 2008

# $2\nu\beta\beta$ results for <sup>150</sup>Nd

939 days of data collection (Feb 2003-Dec 2006), 2828 events passed the selection criteria.



 $T_{1/2} (2v\beta\beta) = (9.20 + 0.25 - 0.22) (stat) \pm 0.73 (syst)) \times 10^{18} \text{ y}^{-0.22}$ 


# 0vββ results for <sup>150</sup>Nd

- To set limit on 0vββ, the LEP CLs method was used.
- Energy above 2.5 MeV.
- Signal detection efficiency: 19%.

#### $T_{1/2} (0\nu\beta\beta) > 1.45 \text{ x } 10^{22} \text{ y} \qquad 90 \% \text{ Cl}$

 $\langle m_v \rangle < 3.7 - 5.1 \text{ eV}$ using NME from V.A. Rodin et al., Nucl. Phys. A 766 (2006) 107

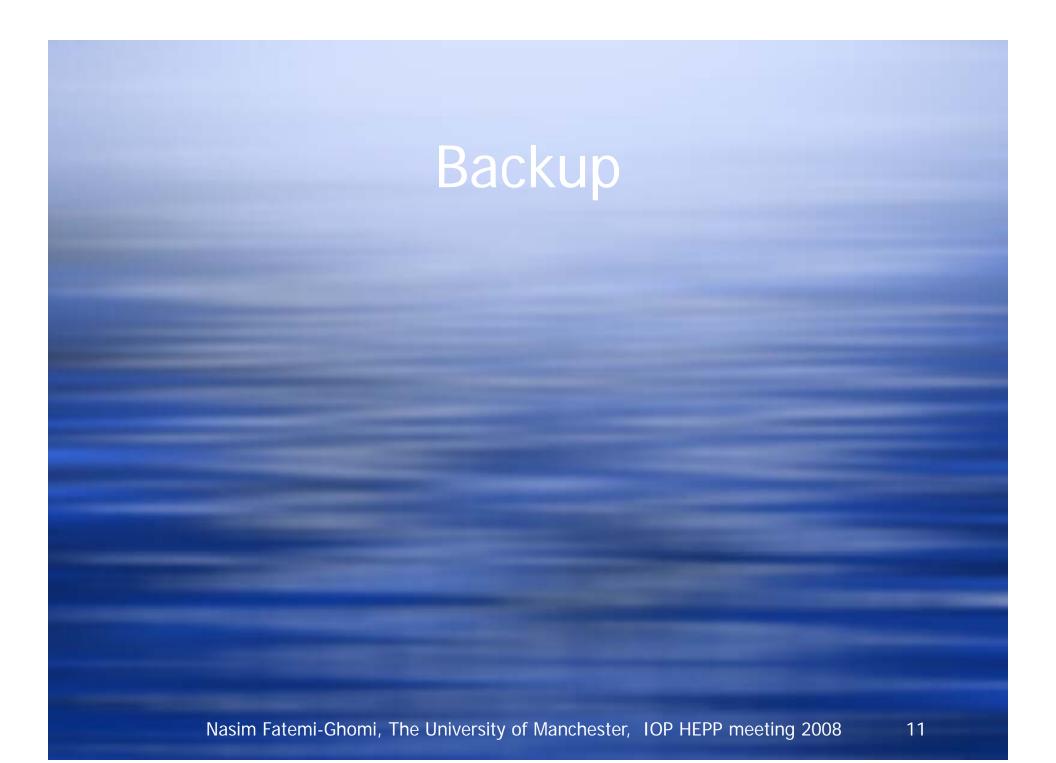
Improved limit by almost a factor 10.
 Previous result: T<sub>1/2</sub> > 1.7 x 10<sup>21</sup> y 90 % CL
 A.A. Klimenko et al., Nucl. Instr. Meth. B 17 (1986) 445



Above 2.5 MeV 28.6 ± 2.7 events expected from background 29 events observed

## Summary

The NEMO 3 detector is still collecting data.


• The half-life of the  $2\nu\beta\beta$  decay of <sup>150</sup>Nd was obtained:

 $T_{1/2} (2\nu\beta\beta) = (9.20 + 0.25_{-0.22} (stat) \pm 0.73 (syst)) \times 10^{18} y.$ 

The limit on the half-life of the 0vββ has been improved by almost a factor 10:

 $T_{1/2} (0v\beta\beta) > 1.45 \times 10^{22} \text{ y} 90\% \text{ CL}$   $\langle m_v \rangle < 3.7 - 5.1 \text{ eV}.$ 

• World's best limit of  $0\nu\beta\beta$  half-life for <sup>150</sup>Nd has been obtained.

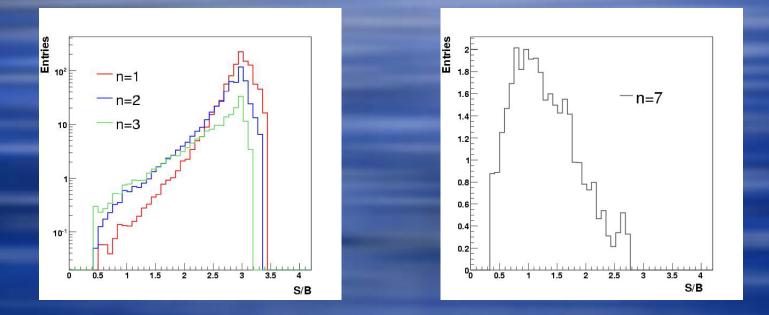


| Background name                                                                                 | Efficiency  | Activity,mBq      | Number of events |
|-------------------------------------------------------------------------------------------------|-------------|-------------------|------------------|
| Ac228                                                                                           | 0.00046     | 1.7+0.1-0.6       | 63.55            |
| Bi212                                                                                           | 0.00029     | 1.7+0.1-0.6       | 40.21            |
| TI208                                                                                           | 0.0011      | 0.62+0.04-0.23    | 56.55            |
| Eu152                                                                                           | 9.44267e-05 | 4.13+2.24-0.62    | 31.42            |
| Bi207                                                                                           | 0.00015     | 0.98 +0.125 -0.05 | 120.12           |
| Bi214                                                                                           | 0.00098     | 0.187±0.043       | 14.87            |
| Pb214                                                                                           | 0.000418296 | 0.187±0.043       | 2.36             |
| K40                                                                                             | 0.75103e-05 | 16.0±0.5          | 100.667          |
| Pa234m                                                                                          | 0.00075199  | 2.65±0.02         | 161.757          |
| Total                                                                                           |             |                   | 591.5+24.1-34.3  |
| Radon                                                                                           |             |                   | 26.3±1           |
| Total Bi210                                                                                     |             |                   | 23.27±1          |
| Externat Background                                                                             |             |                   | 9.6±1            |
| Background from<br><sup>100</sup> Mo , <sup>96</sup> Zr, <sup>90</sup> Y<br>( <sup>48</sup> Ca) |             |                   | 118.67±9         |
| Total background                                                                                |             |                   | 769.3+25.7-35.5  |

Settling Limits on different neutrinoless modes using LEP CL method (D0 statistical tools<sup>1</sup>) Systematic considered for the limit setting:

|      | Signal | 2νββ         | other backgrounds |
|------|--------|--------------|-------------------|
| Eff  | 5%     | 5%           | 5%                |
| Act  | Х      | Х            | +3.3%, -4.7%      |
| Stat | Х      | +2.5%,-2.29% | ó X               |

1- Systematic and limit calculations, Wade Fisher FERMILAB-TM-2386-E, Dec 2006. 6pp


Nasim Fatemi-Ghomi, The University of Manchester, IOP HEPP meeting 2008

# Limit for Neutrinoless double beta decay

| Mode   | Energy<br>(MeV) | Efficiency<br>% | N <  | Half-life >              |
|--------|-----------------|-----------------|------|--------------------------|
| Ονββ   | > 2.5           | 19              | 3.33 | 1.45 x10 <sup>22</sup> y |
| Ονββrc | >2.5            | 11              | 3.29 | 1.27x10 <sup>22</sup> y  |

### Different Majoron modes

To set a more accurate limit, the limit is set in a energy region with maximum S/B.



Nasim Fatemi-Ghomi, The University of Manchester, IOP HEPP meeting 2008

#### At 90% CL:

| Mode | Energy<br>(MeV) | Efficiency<br>% | N<     | Half-life >              |
|------|-----------------|-----------------|--------|--------------------------|
| M1   | 2.0-3.5         | 8.25            | 13.99  | 1.55 x10 <sup>21</sup> y |
| M2   | 1.5-3.5         | 7.95            | 36.19  | 5.79x10 <sup>20</sup> y  |
| M3   | 1.5-3.5         | 5.68            | 57.54  | 2.61x10 <sup>20</sup> y  |
| M7   | 0.5-2.1         | 3.8             | 266.72 | 3.80x10 <sup>19</sup> y  |

#### In comparison with Helene method

Helene Equation (without considering the uncertainties)

M1 [2.0-3.19 MeV] M2 [1.5-3.19 MeV] M3 [1.5-3.19 MeV] M7 [0.5-2.1 MeV] >8.06 X 10<sup>20</sup> year
>5.35 X 10<sup>20</sup> year
>3.08 X10<sup>20</sup> year
>8.70 X 10<sup>19</sup> year