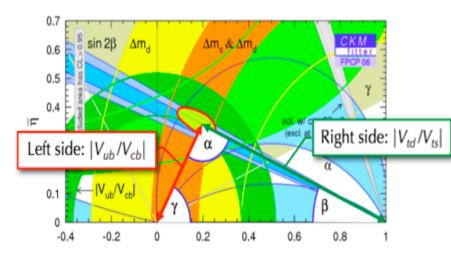
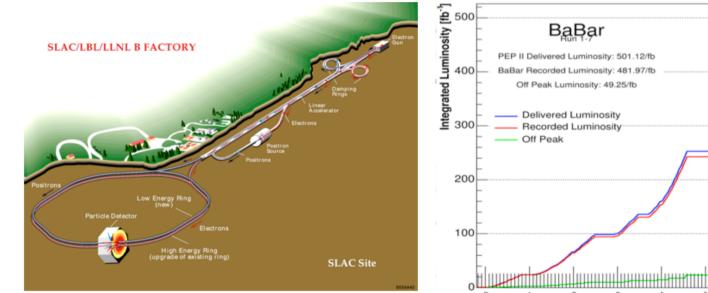


Measurement of the partial Branching Fraction for $\overline{B} \to X_u \ell \overline{v}$ and determination of $|V_{ub}|$ at BaBar


IoP Conference 2008, Lancaster

Outline

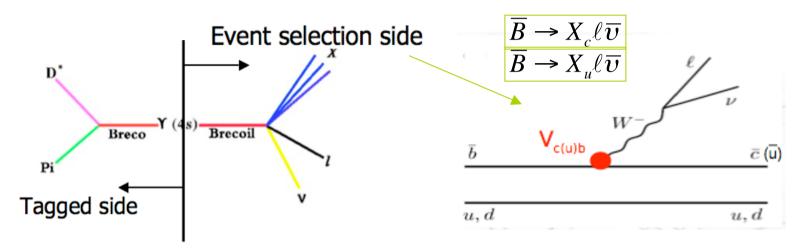
- Motivations
- Brief overview of BaBar
- Analysis Technique
 - Semi-leptonic decays
 - The 'irreducible backround'
 - Preliminary results
- Extraction of $|V_{ub}|$
- Conclusion and prospects


Motivations

- CKM Matrix:
 - Gives insight into Quark flavour mixing
 - and elements $|V_{ub}|$ and $|V_{td}|$ are important in the study of CP Violation in the SM
 - $\ |V_{ub}|$ because of its magnitude is not currently measured with great precision
 - $\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} = \begin{bmatrix} 0.97383 & 0.2272 & 0.00396 \\ 0.2271 & 0.97296 & 0.04221 \\ 0.00814 & 0.04161 & 0.999100 \end{bmatrix}.$
- Because of the unitarity condition we get 'the' unitarity triangle

- · Goal is to 'over-constrain' the triangle
- New physics (if triangle does not close) ?
- My analysis will be the measurement of $|V_{ub}|$ (left side)

Brief overview of BaBar

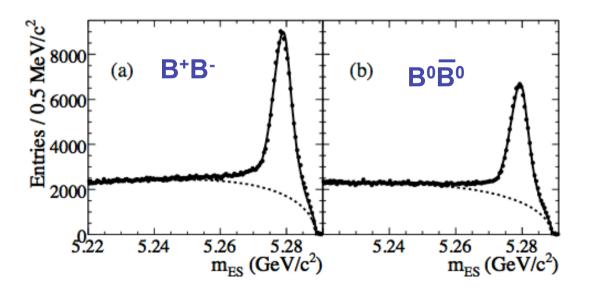

- We collide e^+ and e^- at the Y(4s) resonance (10.58 GeV)
- Y(4s) then decays into BB
- Data taking at Y(4s) resonance has finished
 - 430 /fb of *BB*
 - 45 /fb of 'off-peak'

Crystal-Calorimeter Cherenkov -Detector e+ (3.1 GeV) e (9 GeV Silicon- Vertex- Detector 3 Muon System **Drift Chamber**

Analysis Technique

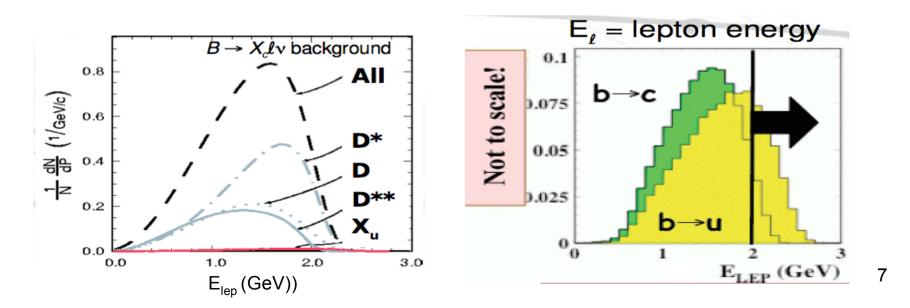
Semi-leptonic decays

• To measure $|V_{ub}|$ we can use semi-leptonic decays of B mesons

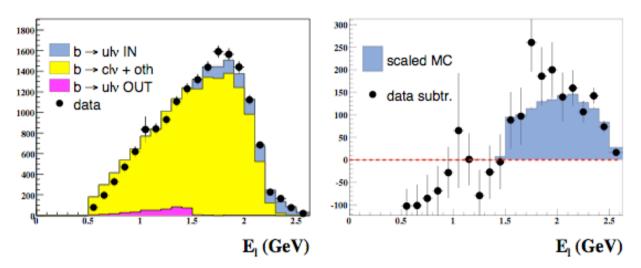


- B_{reco} is fully reconstructed with hadronic tags
- We reconstruct one B_{reco} candidate in:
 - 0.3% of the $B^0\overline{B^0}$ events
 - 0.5% of the B⁺B⁻ events
- B_{recoil} is the semi-leptonic side (look for an electron or a muon after tagging the B_{reco} side)

- For kinematic consistency of B_{reco}
 - Require the beam energy difference to be 0 within 2 standard deviations
 - Require the beam energy substituted mass (m_{ES}) to peak at mass of B (5.28 GeV)


$$m_{ES} = \sqrt{s/4 - \vec{p}_B^2} \qquad \Delta E = E_B - \sqrt{s/2}$$

- Combinatorial and continuum* background is modeled by the same dashed line.
 - Continuum background is $e^+e^- \rightarrow q\overline{q}$ where q = u, d, s, c
- Do a maximum likelihood fit on m_{ES} to extract signal.



The 'irreducible background'

- The main background contribution comes from $\overline{B} \to X_c \ell \overline{v}$ decays (50 times larger than the signal).
 - kinematically similar to signal (hard to separate)
- We select regions of phase space where the background is suppressed and measure a partial branching fraction
- I use the energy of the lepton (right) in the B rest frame (E₁) to do this
- Restricting the phase space in this way challenges the theory

Preliminary results

 What you see above is the various contributions after selection cuts, background subtraction and m_{ES} fit.

- Dataset = 347.4 /fb (383 Million $B\overline{B}$ pairs)

• Normalize MC and data by performing a χ^2 fit to data (1.9 for above plot)

 $\Delta B \ (p \in 1.5 - 2.6 \text{ GeV}) =$ 0.0131 ± 0.002 (stat) ± 0.001 (MC stat)

Extraction of $|V_{ub}|$

• To extract |V_{ub}| use Analytic Coupling model:

$B[p \in (a,b)] = B_{SL}/(1+R_{c/u})W(a,b)$

- a and b are the limits for the lepton energy (1.5 and 2.6)
- $R_{c/u} = |V_{cb}|^2 / |V_{ub}|^2 I(p)G(\alpha_{S}, p)$
 - ratio of semi-leptonic widths (contains what we want to extract, $|V_{ub}|)$
- $-B_{SL}=0.1066 \pm 0.0020$
 - semileptonic branching ratio and we know it from experiment quite well
- W(a,b), I(p) and $G(\alpha_s, p)$ are all theory functions
- Other models 'on the market' include both shape function and parton-related models

Conclusion and prospects

- Presented is a partial branching fraction of $\overline{B} \rightarrow X_u \ell \overline{\upsilon}$ using a dataset of 383 million $B\overline{B}$ pairs (347.4 /fb). Not final result!
- Current endpoint analyses go from around 2.0 2.6 GeV in the lepton energy, I plan to lower to around 1.6 -2.6 GeV. This will reduce theoretical errors
 - Endpoint analysis here is taken from 1.5 2.6 GeV for default testing purposes
- To do this accurately the irreducible background needs to be understood and suppressed a lot more than it is now. Charm tagger?
- Implementation of a $\overline{B} \rightarrow X_{\mu} \ell \overline{\upsilon}$ new MC generator will also be available (when I finish it!)
- Will also use a new model to calculate $|V_{ub}|$
- A further 80 /fb of data will be available for my full analysis

Backup

• Systematic errors are reduced by normalizing to the total number of semileptonic events. $(R_{u/sl})$

$$\Delta R_{u/sl} = \Delta B(\overline{B} \to X_u \ell \overline{\upsilon}) / B(\overline{B} \to X \ell \overline{\upsilon})$$

• Major systematic errors from: m_{ES} fits, detector and MC statistics

		PDG 2006	
N_{sl}^{meas}	N_u^{meas}	Decay Mode	Branching Fraction
per-purity mode	per-purity mode	$B^+ \rightarrow l^+ \nu_l + \text{anything}$	10.9 ± 0.4 %
$p^{\star} > 1.0 \text{GeV}/c$	$p^{\star} > 1.0 \text{GeV}/c$		(6.5 ± 0.5) %
$N_{len} > 0$	$N_{len} = 1$		(2.15 ± 0.22) %
			(0.56 ± 0.16) %
voo(recou) voi > v		$B^+ \to \bar{D}_2(2460)^0 \ell^+ \nu_\ell$	< 0.8% @90CL
		$B^+ \rightarrow D^- \pi^+ \ell^+ \nu_\ell$	(0.53 ± 0.10) %
		$B^+ \rightarrow D^{*+} \pi^+ \ell^+ \nu_\ell$	(0.64 ± 0.15) %
	$N_{K^{\pm}} = 0$ and $N_{K_S} = 0$	$B^+ \to \bar{D}^{(*)} n \pi \ell^+ \nu_\ell$??
	per-purity mode	$ \begin{array}{ll} per-purity \mbox{ mode} \\ p^{\star} > 1.0 \mbox{GeV}/c \\ N_{lep} > 0 \\ \end{array} \begin{array}{l} p_u^{\star} \\ p^{\star} > 1.0 \mbox{GeV}/c \\ N_{lep} = 1 \\ \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

mES fits: The tagged side is of the type $B_{reco} \rightarrow \overline{D}^{(*)}Y^{\pm}$

Y[±] consists of hadrons with total charge ±1 (K^{\pm} , π^{\pm})

We test signal purity with MC. Only modes with a purity of >20% are used

$$p_{v} = p_{Y(4S)} - p_{B_{reco}} - p_{X} - p_{\ell}$$
 11