MSSM Prospects in $B \to \mu^+ \mu^-$ at low tan β

Philip Tanedo (Durham University, IPPP)

in collaboration with A. Dedes (University of Ioannina) and J. Rosiek (University of Warsaw)

Institute of Physics

High Energy Particle Physics Group Meeting Lancaster, 2 April 2008

Advertisement: Supersymmetry

What you should know

- Usual motivation: hierarchy, unification, dark matter, ...
- Many high-scale models, unique TeV model: MSSM
- Two Higgs doublets, $H_{u,d}$. Each gets a vev.
- Ratio of these vevs is a free parameter: $\tan \beta \equiv v_u/v_d$

¹Feng et al., arXiv:0712.0674; Nomura et al., arXiv:0712.2074

Advertisement: Supersymmetry

What you should know

- Usual motivation: hierarchy, unification, dark matter, ...
- Many high-scale models, unique TeV model: MSSM
- Two Higgs doublets, $H_{u,d}$. Each gets a vev.
- Ratio of these vevs is a free parameter: $\tan \beta \equiv v_u/v_d$

Experimentalists: Flavour strongly constrains SUSY

Theorists: We can go beyond MFV1

¹Feng et al., arXiv:0712.0674; Nomura et al., arXiv:0712.2074

Advertisement: Supersymmetry

What you should know

- Usual motivation: hierarchy, unification, dark matter, ...
- Many high-scale models, unique TeV model: MSSM
- Two Higgs doublets, $H_{u,d}$. Each gets a vev.
- Ratio of these vevs is a free parameter: $\tan \beta \equiv v_u/v_d$

Experimentalists: Flavour strongly constrains SUSY

Theorists: We can go beyond MFV¹

Caveat: Flavour experiments are sensitive to any new physics. Particular models (e.g. SUSY) need to be confirmed by the LHC+ILC.

¹Feng et al., arXiv:0712.0674; Nomura et al., arXiv:0712.2074

We want to look for new physics in **B mesons**

Meson	Mass	Mean lifetime
B_d^0 B_s^0	5.28 GeV	1.53×10^{-12} s
B _s	5.37 GeV	1.44×10^{-12} s

This is the *low* energy frontier. Instead of on-shell production of new particles, look for their *virtual effects*.

We want to look for new physics in **B mesons**

Meson	Mass	Mean lifetime
B_d^0 B_s^0	5.28 GeV	1.53×10^{-12} s
$B_{\mathcal{S}}^{ar{0}}$	5.37 GeV	1.44×10^{-12} s

This is the *low* energy frontier. Instead of on-shell production of new particles, look for their *virtual effects*.

- ... i.e. look at loop diagrams.
- ... namely penguin diagrams

Where does one look for penguins?

Where does one look for penguins?

Antarctica: very little background, penguin is dominant.

Where does one look for penguins?

 $B \to \mu^+ \mu^-$: very little background, penguin is dominant.

Very little background, penguin is dominant

Standard Model suppressed by...

- Loop: no tree-level contribution
- FCNC: | V* V | bs
- **Helicity**: Angular momentum $\Rightarrow \mathcal{M} \propto m_u$

Very little background, penguin is dominant

Standard Model suppressed by....

- Loop: no tree-level contribution
- FCNC: | V* V | bs
- **Helicity**: Angular momentum $\Rightarrow \mathcal{M} \propto m_u$

Experimentally clean: final state is very easy to tag in a detector.

Theoretically clean: the only hadronic uncertainties come from f_{B_s}

Current experimental bounds and SM expectations

Channel	Expt.	Bound (90% CL)	
$B_s^0 ightarrow \mu^+\mu^-$	CDF II	$< 4.7 \times 10^{-8}$	$(4.817 \pm 0.017) imes 10^{-9}$
$B_d^0 o \mu^+ \mu^-$	CDF II	$< 1.5 imes 10^{-8}$	$(1.903 \pm 0.006) \times 10^{-10}$
$B_{ m s}^0 ightarrow \mu^+ e^-$	CDF	$< 6.1 \times 10^{-6}$	≈ 0
$B_d^0 ightarrow \mu^+ e^-$	BABAR	$< 9.2 \times 10^{-8}$	≈ 0

Sources:

arXiv:0712.1708

Phys. Rev. Lett. 81

5742 (1998), arXiv:0712.1516

We have box, *Z*-penguin, and *h*-penguin diagrams.

- All blobs are one-loop.
- No photon penguin due to Ward identity.

In particular, the Super symmetric Higgs penguin is enhanced by $\tan^3 \beta$.

$$\mathrm{Br} \approx 5 imes 10^{-7} \left(rac{\mathrm{tan}\,\beta}{50}
ight)^{6} \left(rac{300 \mathrm{GeV}}{M_{A_0}}
ight)^{4}$$

The large $\tan \beta$ regime has been throroughly investigated². On the eve of the LHC(b), we must consider **low** $\tan \beta$.

Here we expect interference when the box and Z-penguin diagrams are of the same order as the tan β -enhanced h-penguin diagrams.

²Buras/Buchalla '93, Chankowski/Slawianowska '01, Dedes/Pilaftsis '02, uras/Chankowski/Rosiek/Slawianowska '03.. Babu/Kolda '99. ...

Preliminary scans

Potential... 'Signal' in 1Y 'Discovery' in 3Y

Implications on **LHCb** upgrade? $(B_s \text{ or } B_d?)$

GPDs will also be able to reach SM limit. (More difficult to tag, requires higher luminosity than LHCb.)

Conclusions

- $B_s \to \mu^+ \mu^-$ might be the first signal of new physics at the LHC
- MSSM low an eta regime is experimentally promising
- Signal of new physics might be a non-signal of old physics
- **Next**: re-sum large $tan\beta$, publicly available software

Conclusions

- $B_s \to \mu^+ \mu^-$ might be the first signal of new physics at the LHC
- MSSM low $\tan \beta$ regime is experimentally promising
- Signal of new physics might be a non-signal of old physics
- **Next**: re-sum large $tan\beta$, publicly available software

Thanks to the organisers!

IOP Institute of Physics

