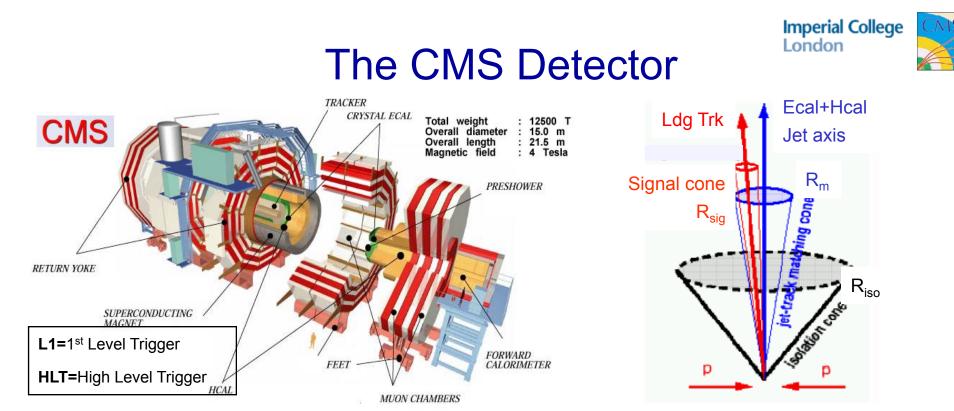


Reconstruction of Z->ττ->e+τ jet events with early data in CMS

Konstantinos A. Petridis

IOP Conference Lancaster 31st March 2008


Overview

- Motivation
- Detector and algorithm description
- \bullet Aspects of τ jet reconstruction
- Results
- Background estimation
- Conclusions

Introduction

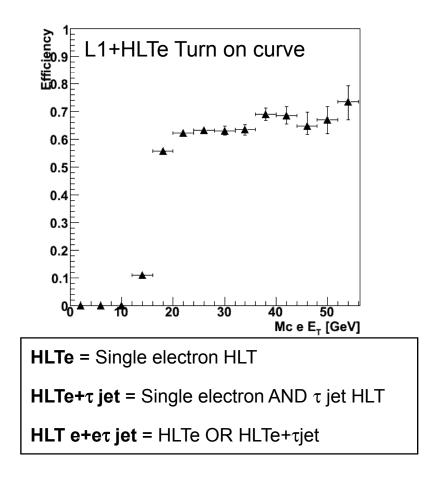
- Motivation for reconstructing and selecting $Z \rightarrow \tau \tau \rightarrow e + \tau$ jet events
 - Benchmark for light SM/SUSY H-> $\tau\tau$ ->e+ τ jet discoveries
 - Main channel to measure τ jet tagging efficiency
 - Vital ingredients for the measurement of x-section of events involving $\boldsymbol{\tau}$ jets
 - Input to measurements of SUSY studies
- Analysis is based on methods to be applied on data from first physics run
 - Events have been simulated accounting for the detector conditions (calibration, alignement) with the first 100pb⁻¹ of data

Electron L1+HLT: Calorimeter isolation at L1. At HLT build Ecal clusters out of "L1 accepted" objects. Build pixel seeded tracks and require E/P, HCal and Tracker isolation cuts.

Offline Electron Id: Based on H/E, E/P, cluster shape, brem fraction, track-cluster matching ...cuts.

Tau Jet L1+HLT: Calorimeter isolation at L1. At HLT build calo-jets out of "L1 accepted objects". Build pixel seeded tracks and require Ecal and Pixel/Track isolation

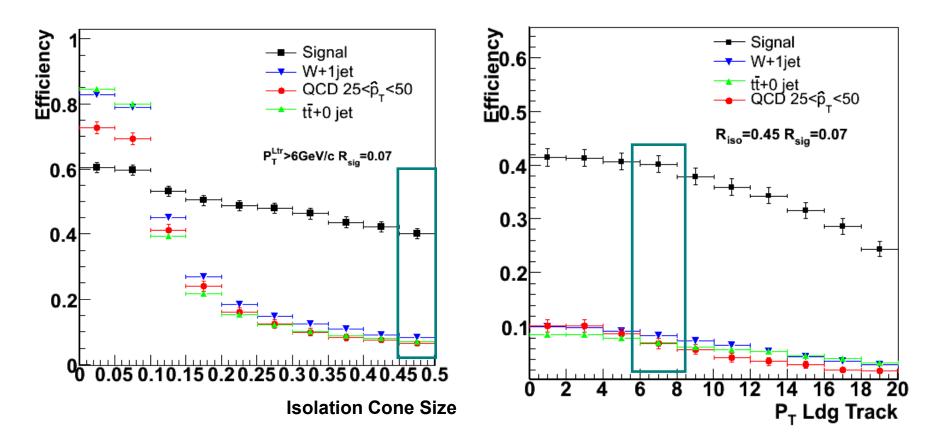
Tau Jet Offline: Calo/PF jet with isolated tracks. Variations of isolation (varying $R_{S,}$ $\eta-\phi$, $\theta-\phi$ cone definitions....)


Triggering on Z-> $\tau\tau$ ->e+ τ jet

London

- Ideally trigger using HLT e+eτ jet trigger
- At 10³²cm⁻²s⁻¹: HLTe E_Te>15GeV HLTe+ τ jet E_T^e>12GeV E_T^{τ jet}>20GeV
- No gain of HLTe+ τ jet on top of HLTe at 10^{32} cm⁻²s⁻¹
- •HLTe+ τ jet becomes important at higher L scenario when HLTe E_{T} threshold increases
- Therefore trigger on these events using HLTe

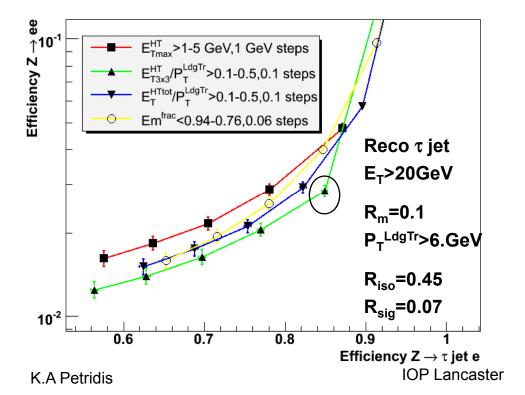
Level-1+HLT <i>e</i> + <i>e</i> τ	(22.9+/-0.4)%	~(12+/-4)Hz
Level-1+HLT e	(22.4+/-0.4)%	~(12+/-4)Hz



Offline τ jet tracker isolation performance

Ldg Trk Finding efficiency factored in

E_T>20GeV Pass electron Rejection



$e-\tau$ jet misidentification

• Electrons are ideal candidates to pass τ jet identification criteria since they are single isolated tracks. Need to be able to reject them.

- E_{Tmax}^{HT} = Max Hcal Tower E_{T} of Jet
- Em^{frac}= EM fraction of Jet

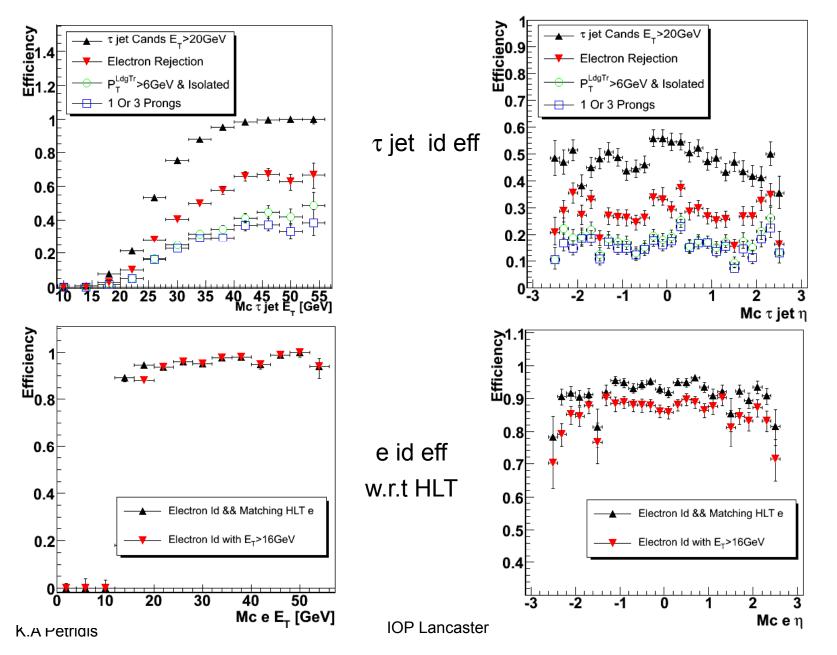
• Best performance by $E_{T3x3}^{HT}/P_{T}^{LdgTr}$ = Sum of 3x3 HCal Tower E_{T} around leading track impact point on Calo Surface divided by Ldg Trk P_{T}

• For E_{T3x3}^{HT}/P_T^{LdgTr}>0.1

•(85+/-0.2)% τ jet efficiency

Imperial College

London


•(2.7+/-0.2)% e efficiency

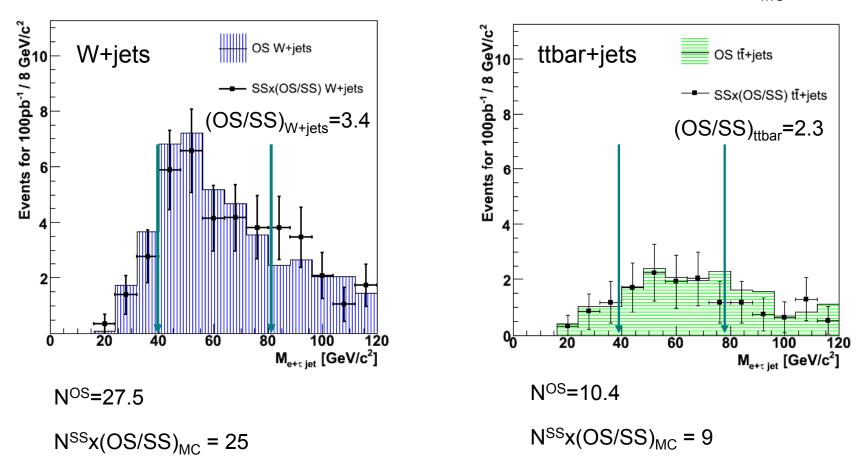
 Further apply veto for candidates with LdgTr @ Ecal pointing to η cracks giving a total

•~80% τ jet efficiency

•~1% e efficiency

Offline Signal Performance

Imperial College London

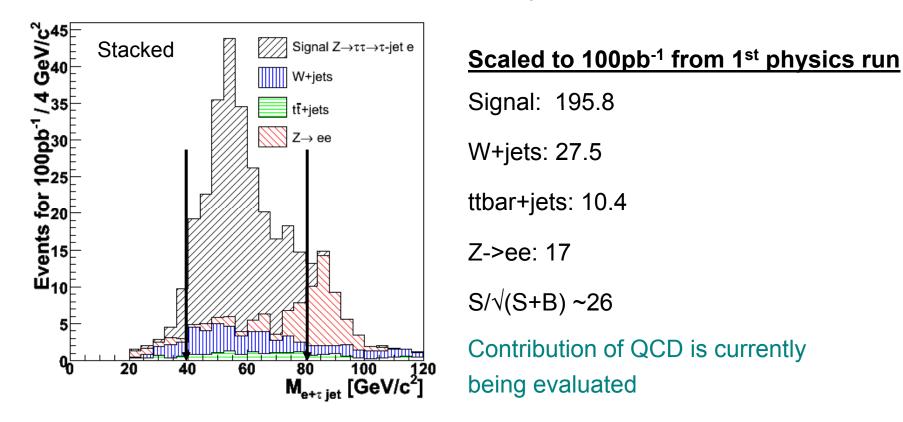

Background Estimation

- The charges of the electron and τ jet in Signal events are opposite
 - This gives a good handle for selecting a Signal-Free mass window by looking at Same Sign (SS) $M_{e+\tau jet}$
 - Background contribution in the Opposite Sign (OS) mass window can be extracted by looking at the number of events and shape of the SS mass window
- Treat QCD and EWK processes separately
 - Use dedicated analyses to get the number of events for the corresponding luminosity and apply the selections efficiencies obtained from MC simulations to extract N_{W+jets} ^{SS}, N_{ttbar} ^{SS}, $N_{Z+jets->ee}$ ^{SS}
 - The (OS/SS)_{EWK} ratios are obtained from MC simulations and verified with data
 - For QCD: $N_{QCD}^{SS}~=~N_{data}^{SS}~-~N_{W+jets}^{SS}-N_{t\bar{t}}^{SS}-N_{Z+jets}^{SS}$
 - And (OS/SS)_{QCD} can be obtained by looking at events passing a Non-Isolated electron trigger. This trigger has just been approved by CMS so this study is ongoing

W+jets and ttbar Background Estimation

Extracting Visible OS mass dist'n from SS N^{OS}=N^{SS}x(OS/SS)_{MC}

Imperial College


Z->ee Background Estimation

- Extract OS Z->ee contribution by looking at events with reverse electron rejection criteria E_{T3x3}^{HT}/P_T^{LdgTr}<0.1 (τ-veto)
- Hence $N_{Z->OS}^{e-veto} = N_{Z->eeOS}^{\tau-veto} x \varepsilon_{Z->ee}^{e-veto} / \varepsilon_{Z->ee}^{\tau-veto}$
- This requires knowledge of $\varepsilon_{Z->ee}^{e-veto}/\varepsilon_{Z->ee}^{\tau-veto}$ which can be extracted using "Tag and Probe" methods (See Backup)
- Can also extract mass shape however there are still some discrepancies that need to be understood

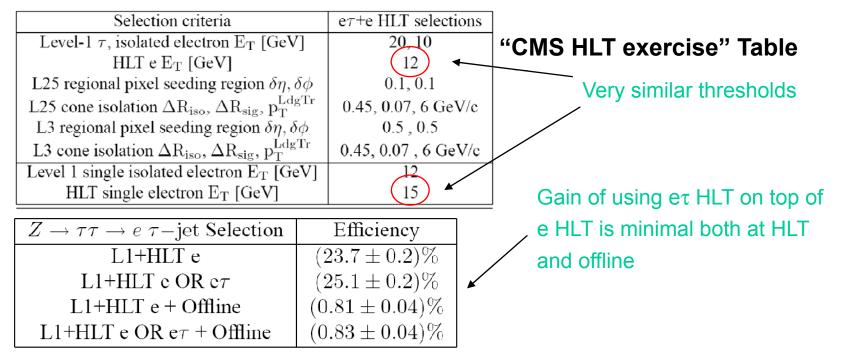
Mass Plot

Look at invariant mass between Opposite Sign (OS) reconstructed visible Z products $M_{e+\tau jet}$ since want to minimise the use of Missing E_T at startup

Conclusions

- Presented a brief description of some of the aspects of selecting and reconstructing Z->ττ->e+τ jet events
- Performance of the algorithms was discussed
- For 100pb⁻¹ we have ~200 Signal with ~ 55 Bkg events (QCD omitted)
 - Effect of QCD is currently being studied.
- Methods for extracting the number and shape of background events from data were discussed
- Finally data driven methods for measuring the "per jet" τ tagging efficiency are being studied.

Backup


Samples used

- Data Sets used
 - − Signal: Pythia Z $\rightarrow \tau \tau \rightarrow e + \tau$ jet with $|\eta|_{e,\tau \text{ jet}} < 2.5 \ 70 \text{GeV/c}^2 < m_Z < 110 \text{GeV/c}^2$
 - − Pythia Z \rightarrow ee $|\eta|_e$ <2.5 m_Z>40GeV/c²
 - Alpgen W+0,1,2 jets
 - Alpgen ttbar+0,1,2 jets
 - Pythia QCD p_T^{hat} 25-170GeV

Triggering on Z-> $\tau\tau$ ->e+ τ jet events

- Ideally a logical OR between Single Isolated e HLT (e HLT) and the X-channel e τ HLT should be used
 - However current trigger table designed for L= 10^{32} cm⁻²s⁻¹ has low E_T threshold for eHLT
 - For startup L use only Single e HLT which is ideal for τ tagging efficiency measurement

- However as L increases, e HLT E_T threshold will need to increase accordingly
 - Gain of $e\tau$ HLT on top of e HLT will be more evident

τ id tightening

25

20

15

10

5

Rsig

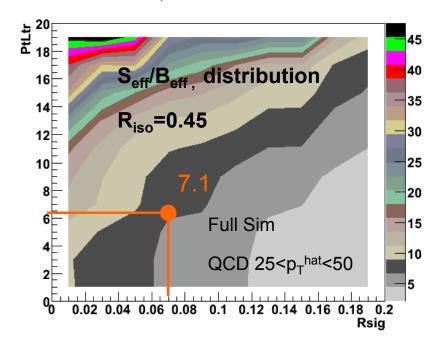
 Look at isolation + leading track finding efficiency in Signal QCD 25<p^{hat}<50 and QCD 50<p^{hat}<170

²⁰ لل

16

14

12


10

8

6

4

2⊢

"Per jet" efficiency w.r.t jets that pass:

 $E_T^{\tau \text{ cand}} > 20 \text{GeV},$

```
E_{T3x3}^{HT}/P_{T}^{Ldg}>0.1,
```

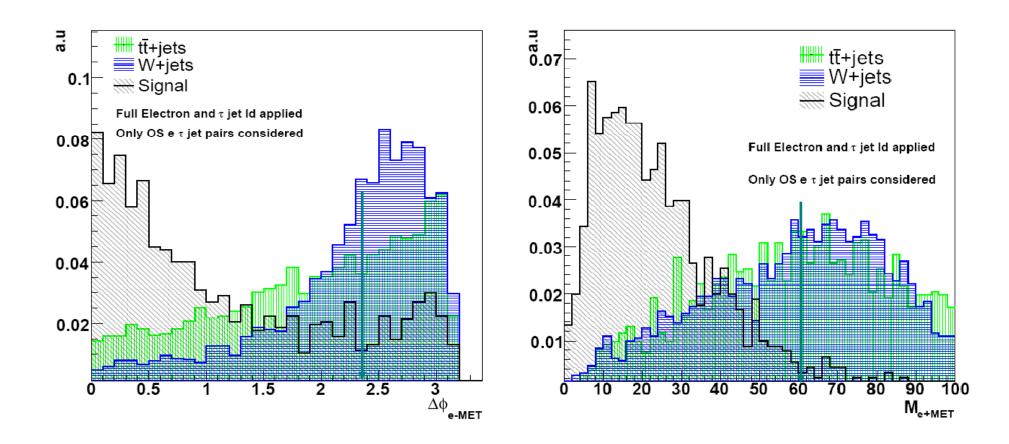
```
\Delta \eta_{LdgTr-HTmax}<0.1,
```

Tighten cuts: R_{sig}=0.05, P_T^{LdgTr}>16GeV QCD_25_50 per jet S/B~22 QCD_50_170 per jet S/B~15

Full Sim

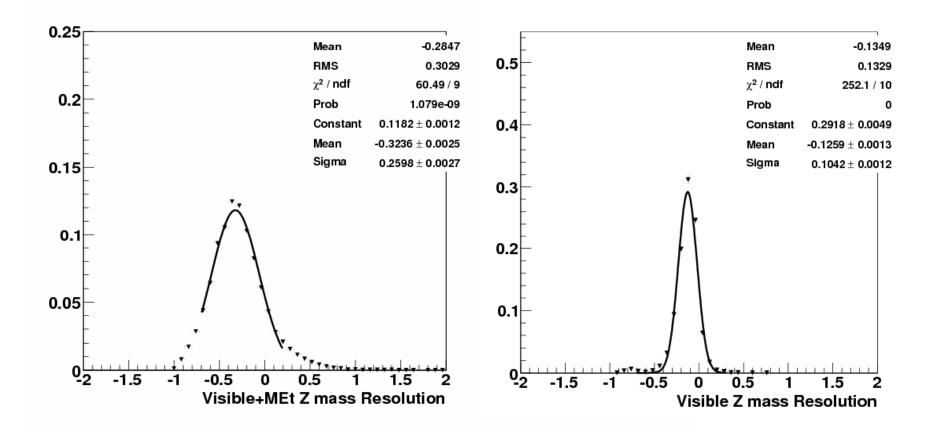
0.02 0.04 0.06 0.08 50 ₹P0.12 0.14 0.16 0.18 0.2

QCD

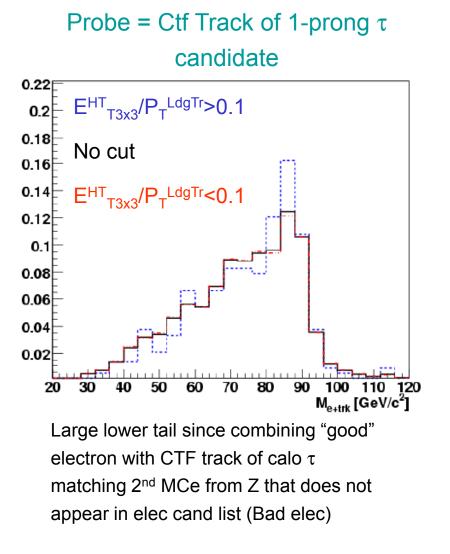

S_{eff}/B_{eff}, distribution

8.3

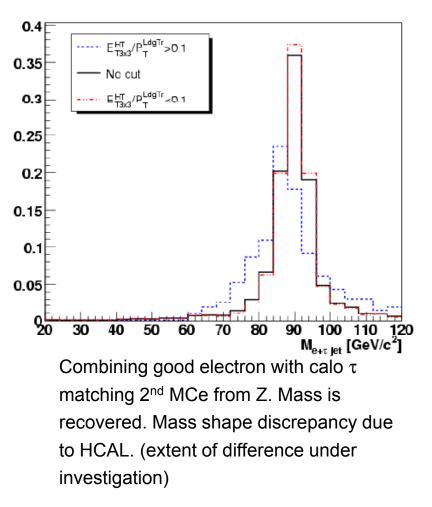
R_{iso}=0.45


Kinematic Variables

Mass Resolutions

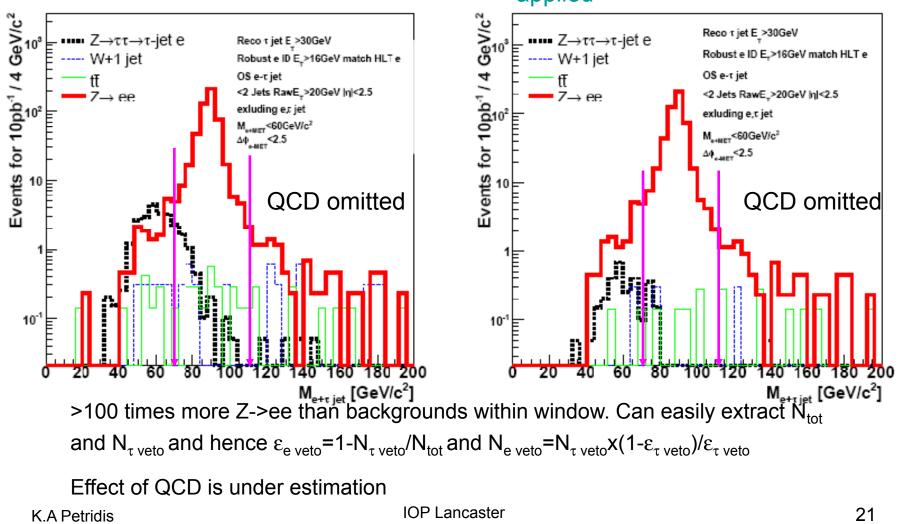


Measuring Electron Rejection Efficiency on Electrons using Z->ee

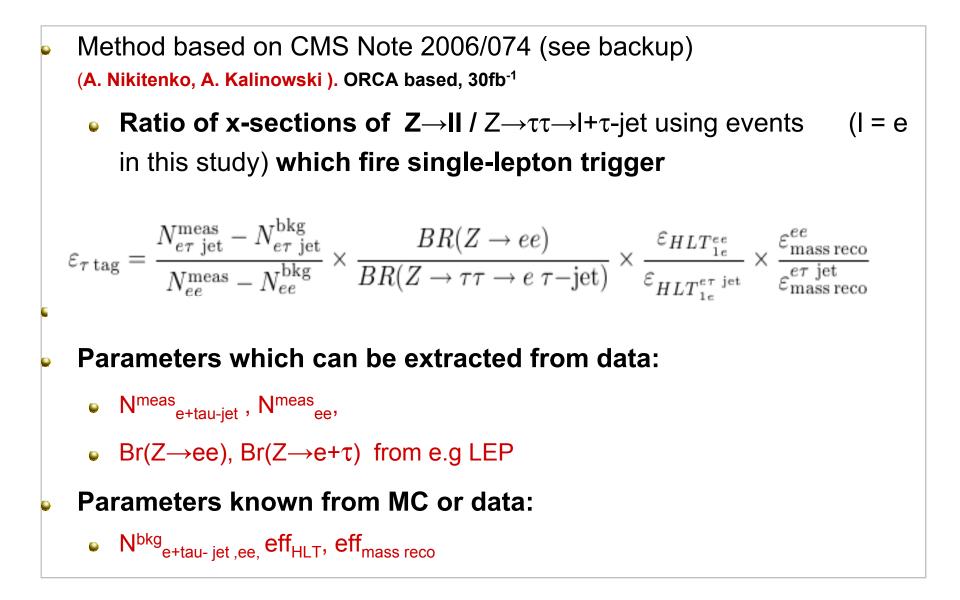

- Based on tag-probe method used by Egamma people
 - Use events triggered by Single Iso elec HLT
 - Tag: electron passing offline and HLT Id Require only 1 per event
 - Probe: τ candidate passing isolation but without applying e-rej criteria
 AND not collinear to Tag electron
 - Then plot $M_{(tag-probe)}$ for:
 - a) No e-rejection criteria applied. Events in window=N_{tot}
 - b) With reversed e-rejection (τ -veto) criteria applied . Events in window=N_{τ veto}
 - Contrary to tag-probe method of Egamma we define $M_{(tag-probe)}$ energy and direction of τ candidate and not track information.
 - $\epsilon_{\tau \, veto} = N_{\tau \, veto} / N_{tot}$ and hence can get the e-rej efficiency $\epsilon_{e \, veto} = 1 \epsilon_{\tau \, veto}$

View of M_(tag+probe)

Probe = Calo Jet of τ candidate



Feasibility of measurement


 $M_{e+\tau jet}$ for Z->ee and backgrounds with no e-rej criteria applied

 $M_{e+\tau jet}$ for Z->ee and backgrounds with reverse e-rej (τ veto) criteria applied

Tau tagging efficiency measurement method (I)

Tau tagging efficiency measurement method (II)

- Definition of efficiencies
 - Want to measure τ tagging efficiency on as a pure sample of τ jets as possible, so apply electron rejection selections with efficiency $\epsilon_{\tau q}$ before τ ld is applied

 $\varepsilon_{\text{mass reco}}^{e\tau \text{ jet}} = \varepsilon_{e \,\text{E}_{\text{T}}} \times \varepsilon_{\tau \,\text{E}_{\text{T}}} \times \varepsilon_{\tau \,\text{q}} \times \varepsilon_{\text{m}_{\text{T}}^{e-\text{MET}}} \times \varepsilon_{n \,\text{Jets}} \times \varepsilon_{\Delta \phi_{e\tau}} \times \varepsilon_{E_{\nu}} \times \varepsilon_{m \,\text{sel}}$

- Definition of efficiency measured in note
 - For purpose of note Ldg Track finding efficiency was factored in efficiency

 $\varepsilon_{\tau \operatorname{tag}} = \varepsilon_{\operatorname{Ldg Tr}} \times \varepsilon_{\operatorname{iso}} \times \varepsilon_{1 || 3}$

- This is a global efficiency given that electron rejection criteria are satisfied
 - Efficiency as a function of t jet E_T is underway