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The MINOS Experiment
Main Purpose of MINOS

* to measure disappearance of muon NN | D =
neutrinos “

MINOS Detectors

* Iron scintillator calorimeters, functionally
identical

* Near Detector:
* 1KkT,3.8mx4.8mx 15m,
* 282 steel planes, 153 scintillator planes

* Far Detector
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Neutrino oscillations:
normal mass hierarchy:

Electron Neutrino Appearance m.>m,>m’ vl |V, U, U,
vI=iv, v, U NI
inverted mass hierarchy: g g g g
The probability that a muon neutrino will m§>mf>m§ v \U, U, U_llv,
oscillate to an electron neutrino is given by: Weak PMNS Mass
Eigenstates Matrix Eigenstates

P(vu—>ve):sin2923sin22913sin2(1.27A milL/E)

Spectrum With/Without Signal for Selected Candidate Events

v, 7V, dominant oscillation mode; —_Monte Carlo _

v oV, sub-dominant oscillation mode, + ~ Signal and Backgroun

’ + - Background Only
| " CC signal Events -
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current best limit set by the CHOOZ experiment:
e.g. for Am,=2.4x10""eV*—sin"20 ,<0.15
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MINQOS identifies electron neutrino interactions by shower topology (track for muon neutrinos).

Charged Current Charged Current
Muon Neutrino Event Neutral Current Event Electron Neutrino Event
A% U v v A% e
W w

Shower Shower

Muon track and hadronic Shorter event, mostly EM shower, often similar
shower at vertex shower hits topology to NC event
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Near Detector Spectrum

Due to granularity of detectors, charged current v = events are eclipsed by a variety of backgrounds:

* mainly neutral current events (NC)

* additionally muon neutrino charged current events with a very short track (CC v, )
* beam electron neutrino charged current events (beam CCv )

* tau neutrino charged current events (Far Detector only — CCv )

* MINOS neutrino interactions occur in a kinematic
region where little experimental data available

Near Detector MINOS PRELIMINARY
T T T [ ¢ r T § & T [ T ¥ ¥ [ T ]

v Selected
* particle showers in MINOS detectors hard to model 3000~ — i _
=> Data / MC disagreement not unexpected —e —e— Data

* developed 2 data-driven methods to correct our
Near Detector MC to match the Data and to split out
the different background components (separate

extrapolation) _T_|='=‘—-|
e+ R

* One of those two methods is the Muon Removed
Charged Current method (MRCC)
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Muon Removed Charge Current Method

CCv : NC
* To first order, in the MINOS detectors, CC v, s — 5
and NC showers are similar = i
* Can identify muon CC v events very well, so Shower Shower
can create an independent shower sample to ” -

correct our MC. e T e
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For both MC and Data, take muon neutrino charged
current events and remove the muon track
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Re-reconstruct, so as to simulate the behaviour of
normal neutral current events
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Shower Remnant

Select a pure sample of muon-removed events that
were originally charged current muon neutrino events
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Transverse Position (m)

Apply analysis selection cuts to both MC and Data, I
then take the Data / MC ratio to provide an ad-hoc o 1
correction factor to MC neutral current events Depth (m)
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Standard Near Detector Events and Muon Removed Events Comparison

Near Detector CC ,, selected _  Near Detector
standard events show similar gsoooﬁ .
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data-MC disagreement to muon 82000; —Std. MC |
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comparisons points to imperfect Reconstructed Energy (GeV)

shower modelling as the source
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for shower topology variables S osf 1
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Muon Removed Correction: Reconstructed Energy (GeV)
MRcorr. _
NC —NCStd.MC(DATAMR/MCMR)

corr.

CC v, = Data— NC" " — Beam vV,

MINOS PRELIMINARY
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Near Detector Results from Data-Driven Background Estimation Methods

Near Detector MINOS PRELIMINARY
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* MRCC method agrees with data by design.

* Second method is independent and depends on beam description. The two data-driven
methods agree with each other.

* Obtained backgrounds are then ready to be extrapolated to the Far Detector and data-
driven sensitivity limits can be obtained.
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Our preliminary expectation is 42-43 background events in the Far Detector based on the
two data-driven Near Detector methods. Signal depends on oscillation parameters.

MINOS projected sensitivity for 3.25e20 MINOS projected sensitivity for
POT (data statistics available now) and for increased exposure and reduced, but
a systematic error of 10%: achievable systematic errors:
MINOS Projected 90% Exclusion MINOS Projected 90% Exclusion Region
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Summary

* The MINOS electron neutrino appearance analysis is difficult
due to the shower resolution of the detectors (optimized to detect
CC v interactions characterised by long muon tracks)

* Despite this, MINOS's two detectors allow us to predict the Far
Detector background using the Near Detector selected spectrum

nain
Injector
Neutring
Osaillation
Search

* We have developed 2 data-driven methods to separate out the various Near Detector
background components in order to propagate them to the Far Detector

* MINOS is close to carrying out its first electron neutrino appearance

analysis!
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Back-Up Slides
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Standard samples versus Muon Removed samples shower topology comparisons:
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Horn On/Off Method Results:

Near Detector MINOS PRELIMINARY
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The 2 methods agree within errors.
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Near Detector Numbers:

PRELIMINARY Total NC V ,CC V,CC — Beam

Data-Driven MRCC 7303 4899 1617 788
Data-Driven HOO 7303 4491 2025 788
Monte Carlo 9668 6230 2651 788

Far Detector Numbers:

PRELIMINARY Total NC V.,CC V,CC - Beam CC
Data-Driven MRCC 43 32 6 3 2
Data-Driven HOO 42 29 8 3 2




Kinematic variables:

Near Detector MINOS PRELIMINARY

Near Detector MINOS PRELIMINARY
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Neutrino oscillations:

Ve u, U, Ui\lv, SVARE 512€13 513 e’ v
Vi~ Uul U,Jz Uu3 Vol 7| 751265 1253513 o' €™ 51252353 e'? 53C13 || Va2
V. U, U, Ujllv, 5129237 €12C 3513 e TS 8100303 2 CnCi3 ||V
Weak PMNS Mass

Eigenstates Matrix Eigenstates where s;=sino, and ¢, =cos0,



