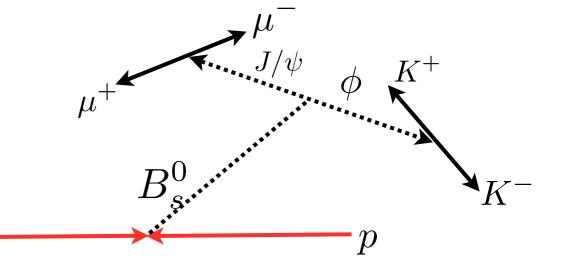


Performance and Physics with the channel $B_s\!\to J\!/\psi\; \varphi$


Alastair Dewhurst

Motivation

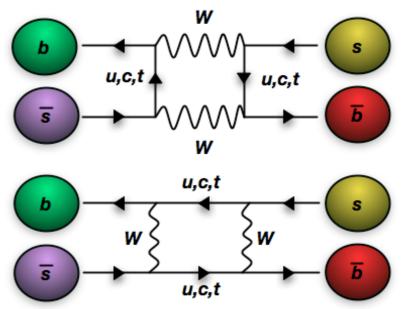
2

• $B_s \rightarrow J/\psi \varphi$ decay exhibits CP violation (CPV) sensitive to physics beyond SM (BSM)

To measure CPV, the 3 CP-eigenstates of $J/\psi\,\varphi$ must be separated

$$CP + = (A_{||} + A_{\perp})/2$$
$$CP - = (A_{||} - A_{\perp})/2$$
$$CP + = A_0$$

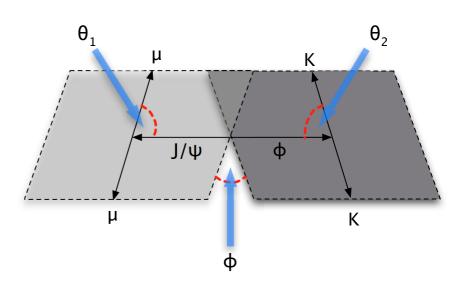
This means the helicity amplitudes; A_{II} , A_{\perp} and A_{0} should be determined from angular analysis


- \rightarrow very high statistics available only at LHC in ATLAS 20 fb⁻¹ = 100 000 events
- With early data > 150 pb⁻¹ $B_s \rightarrow J/\psi \varphi$ will serve for calibration, alignment tests (B mass and lifetime)

B_s-meson mixing

- Leads to two mass eigenstates: B_H , B_L with decay rates Γ_H , Γ_L $\Delta \Gamma = (\Gamma_H + \Gamma_L)/2$ $\Delta \Gamma = (\Gamma_H - \Gamma_L)/2$
- CP violation can occur in interference between mixing and direct decay amplitudes with the weak phase difference Φ_s

Mixing in the SM



$\phi_s \equiv 2 \arg V_{ts}^* V_{tb} + \phi_{NEW}$		Bd	Bs
	ΔM	0.507 ± 0.005	17.77 ± 0.01 ± 0.07
	$\Delta\Gamma/\Gamma$	~0	0.12 ± 0.09
$\Delta M = (\Delta M_{SM}) + (\Delta M_{NEW})$	ф _{d,s}	0.738 ± 0.029	~0.04 (SM)

ANCASTE

Measurable quantities

The process $B_s \rightarrow J/\psi \phi$ is described by 8 parameters $\Gamma_s, \Delta\Gamma, \phi_s, \Delta M_s, A_{||}, A_{\perp}, \delta_1, \delta_2$

We measure the following variables; decay time of B_s, 3 decay angles and B_s tag

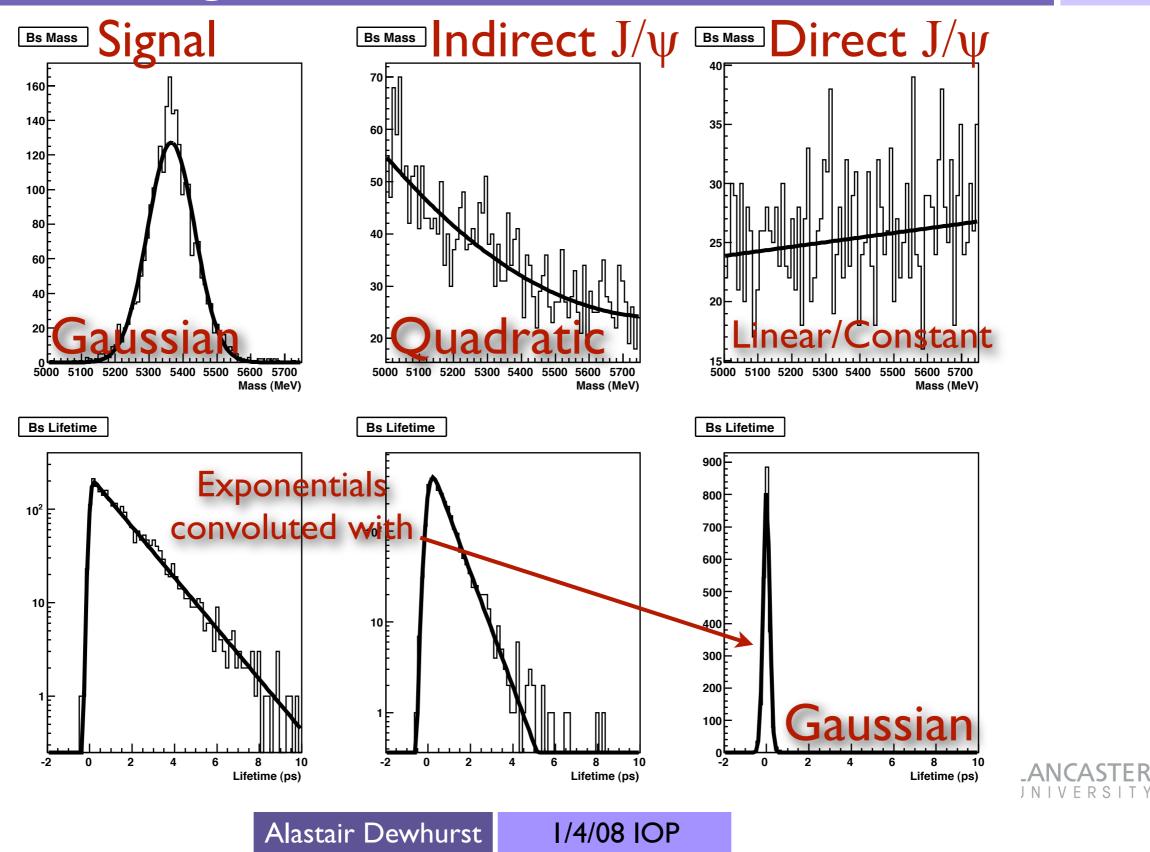
Both the B_s and B_s decay to the same final state so it will be necessary to tag the flavour of the B meson at production

- The $B_d \rightarrow J/\psi \ K^{0*}$ decay will be the main source of background for the B_s decay so it will be important to understand it fully
- The $B_d \rightarrow J/\psi \ K^{0*}$ decay is topologically the same as $B_s \rightarrow J/\psi \ \varphi$ and will occur 10 times more frequently
- With early data will focus on detector performance and alignment sensitive tests, such as measuring the lifetime and mass of the B_d and B_s meson
- At low luminosities we will not apply secondary vertex / decay time cut which will allow for the study of the vertex / decay time resolution

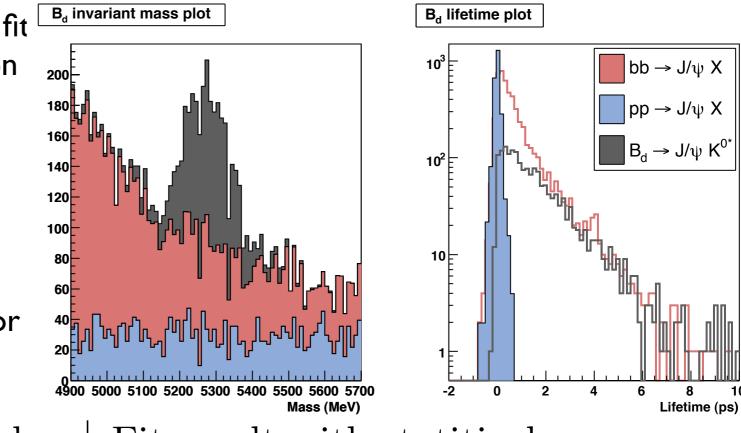
LANCAST U N I V E R S

Simultaneous maximum likelihood fit

- Why is it needed?
 - High combinatoric background due to poor particle ID means that it is impossible to extract a lifetime measurement without using the mass.
 - A binned fit is not as accurate as a non-binned fit if some bins have very high statistics and others very low statistics such as with an exponential decay.


• How is it done?

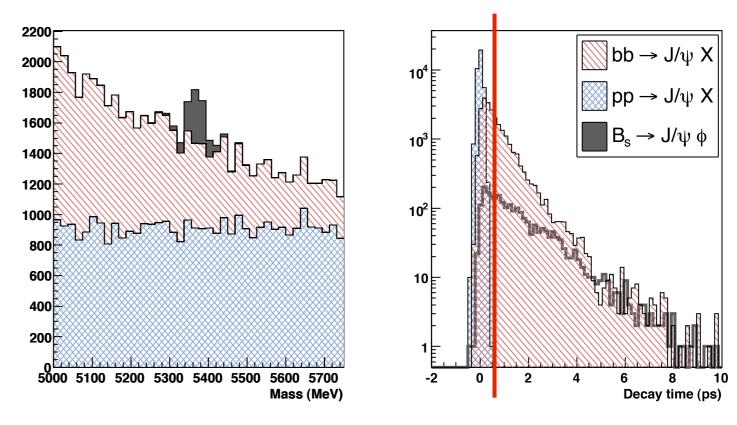
- A likelihood function needs to be constructed by looking at the various contributions expected from the signal and background.
- The log of the likelihood function is maximized using the Minuit software package.


Constructing the likelihood function

7

Simultaneous fit to mass and decay time with 10pb⁻¹

- A non-binned maximum likelihood fit of II parameters was performed on simulated data
- Table shows results of 6 main parameters from fit to 10 pb⁻¹ of $B_d \rightarrow J/\psi \ K^{0*}$ candidates
- Similar precision can be achieved for $B_s \rightarrow J/\psi \phi$ with 150 pb-1



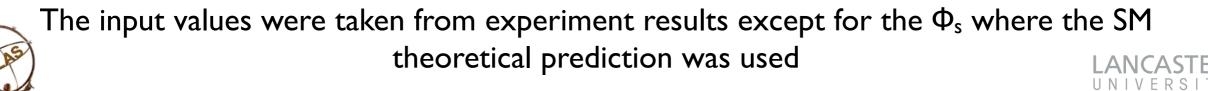
_	Parameter	Simulated value	Fit result with statitical error	
	$\Gamma, \text{ ps}^{-1}$	0.651	0.73 ± 0.07	
	m(B), GeV	5.279	5.284 ± 0.006	
_	σ,ps	_	0.132 ± 0.004	
	$\sigma(m),~{ m GeV}$	_	0.054 ± 0.006	
	n_{sig}/N	0.16	0.155 ± 0.015	
LAS	n_{bck1}/N	0.62	0.595 ± 0.017 lancaster	
Y			UNIVERSITY	
		Alastair Dewhurst	I/4/08 IOP	

10

Simultaneous fit to mass and decay time before and after 0.5 ps lifetime cut

- The plot shows the $B_s \rightarrow J/\psi \Phi$ reconstruction with 150 pb-1
- The red line indicates the cut at 0.5 ps.
- The lifetime cut will be necessary to keep the event rate down at high luminosities.
- The lifetime cut effectively removes all the background from direct J/ψ production.
- The lifetime cut removes approximately 30% of the signal and indirect J/ψ background.
- Once the lifetime cut is in place the lifetime resolution of the detector will be fixed.

- As the statistics increases it will be possible to extract more physics parameters from the fit.
- With 1 fb^{-1} it will be possible to extract the 2 B_s lifetimes.
- With 20fb⁻¹ it will be possible to extract 5 of the 8 physics parameters describing the $B_s \rightarrow J/\psi \phi$ decay LANCAST



$B_s \rightarrow J/\psi \ \varphi$ analysis with 2 - 20 fb⁻¹

- Statistics corresponds to roughly 100 000 signal events
- A non-binned maximum likelihood fit was used to simultaneously determine the following parameters: $\Gamma_s, \Delta\Gamma, A_{||}, A_{\perp}, \phi_s$ The remaining parameters were fixed

	Input	ATLAS with $20fb^{-1}$	CDF with $1.7 f b^{-1}$
A_{\perp}	0.40	20%	Fixed from $B_d \to J/\psi K^{0*}$ fit
A_{\parallel}	0.57	10%	Fixed from $B_d \to J/\psi K^{0*}$ fit
$\Delta \ddot{\Gamma}$	0.08	20%	80%
Γ_s	0.65	2%	3%
ϕ_s	0.04	0.1	Fixed at 0

The values in the 3rd and 4th column are relative errors except Φ_s which is absolute error

Conclusions and future work

- With early data $B_d \rightarrow J/\psi \ K^{0*}$ and $B_s \rightarrow J/\psi \ \varphi$ can serve as a test of ATLAS detector performance by fitting mass and lifetime.
- In the $B_s \rightarrow J/\psi \, \varphi$ decay it will be possible to measure Φ_s to an accuracy of 0.1 with 20 fb⁻¹. This precision allows us to test BSM contributions
- Aim to extend the fit to include backgrounds from more sources.

