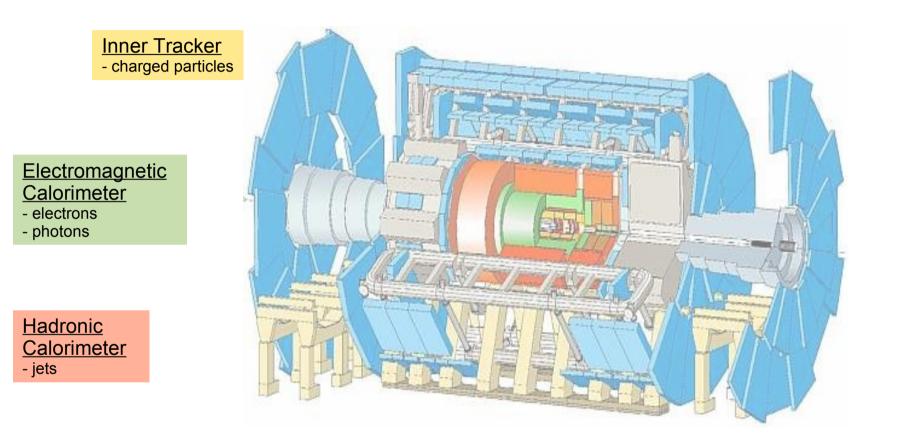


Trilepton SUSY Signatures



Tina Potter Supervisor: Antonella De Santo RHUL 02/04/08 IOP HEP Conference

Royal Holloway University of London

The ATLAS detector

Trilepton Analysis uses the entire ATLAS detector

Magnet System - momentum measurement

Muon Spectrometer

Not forgetting...

- + trigger
- + data acquisition
- + computing ...systems

Supersymmetry Primer

- → Provides answer to quadratic divergences in the loop corrections to the Higgs mass
- → R-parity conservation brings proton lifetime into agreement with experimental data
- → Introduces heavy new particles
- Lightest Supersymmetric Particle (LSP) is stable good dark matter candidate!

SM Particle	Particle	Spin	R-Parity	Superpartner	Spin	R-Parity
Fermions	l	1/2	+1	Ĩ	0	-1
	q	1/2	+1	$ ilde{q}$	0	-1
Bosons	Bosons W^{\pm}, W^0		+1	$ ilde W^\pm, ilde W^0$	1/2	-1
	В	1	+1	\tilde{B}	1/2	-1
	g	1	+1	ĝ	1/2	-1
	Н	0	+1	$ ilde{H}_u, ilde{H}_d$	1/2	-1

$$R=Parity$$

$$R=(-1)^{2(B-L)+2S}$$

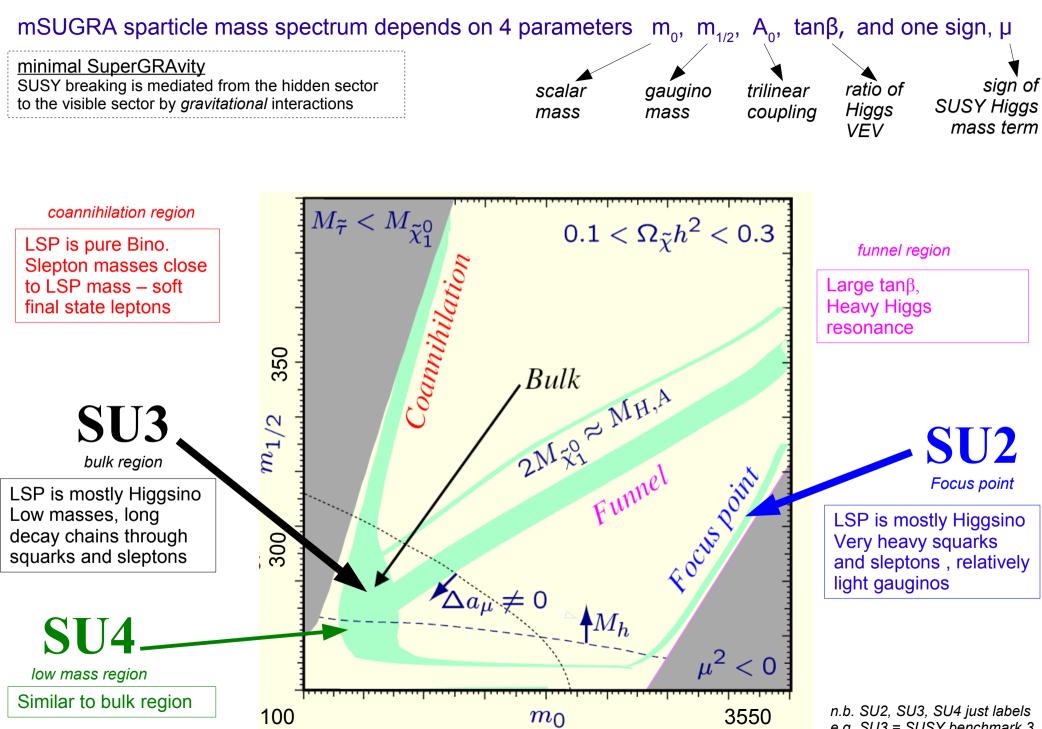
$$S = spin$$

$$B = baryon number$$

$$L = lepton number$$

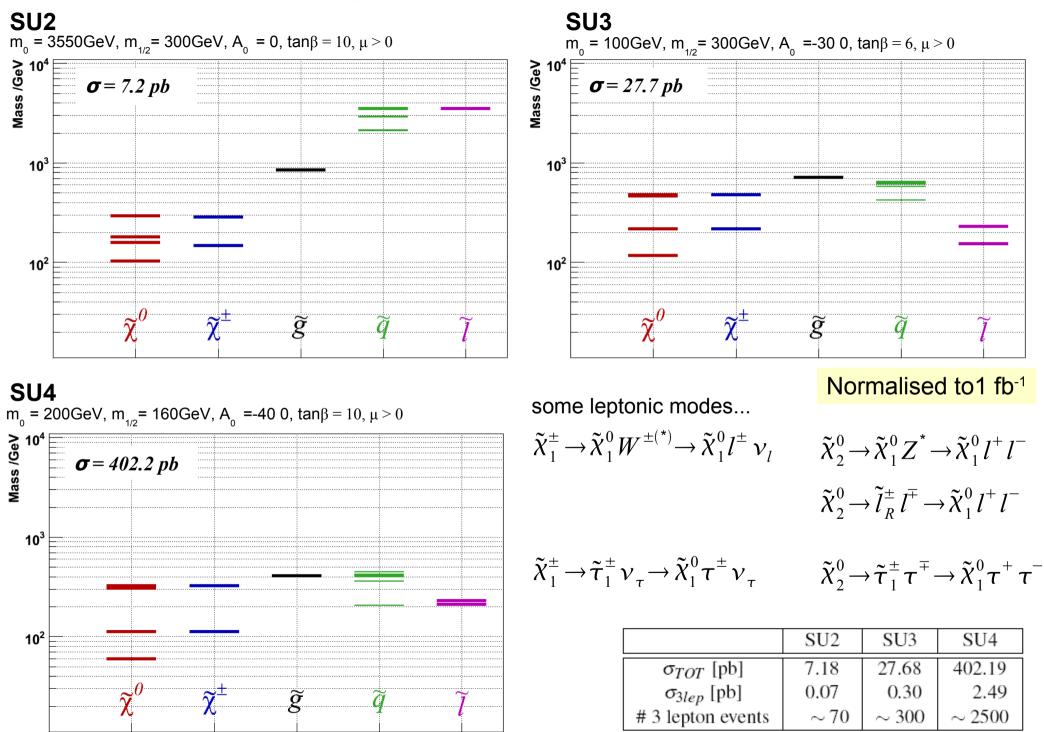
 $\tilde{H}_{u} = (\tilde{H}_{u}^{+}, \tilde{H}_{u}^{0})$ $\tilde{H}_{d} = (\tilde{H}_{d}^{0}, \tilde{H}_{u}^{-})$

Gauge eigenstates W^{\pm} , W^{0} , B


mix to give 4 mass eigenstates

 W^+ , W^- , Z , γ

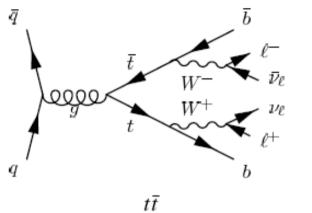
Neutral higgsinos and gauginos $\tilde{H}_{u}^{0}, \tilde{H}_{d}^{0}, \tilde{W}^{0}, \tilde{B}^{0}$ mix to give 4 mass eigenstates called neutralinos $\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{3}^{0}, \tilde{\chi}_{4}^{0}$ *usually the LSP* Charged higgsinos and gauginos $\tilde{H}_{u}^{+}, \tilde{H}_{d}^{-}, \tilde{W}^{+}, \tilde{W}^{-}$ mix to give 2 mass eigenstates called charginos $\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{\pm}$


ATLAS at the LHC is dedicated to finding new physics at the TeV scale, such as SUSY

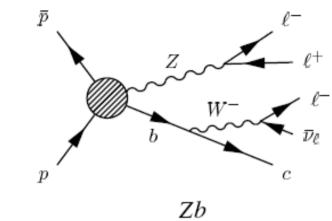
mSUGRA parameter space and benchmark points

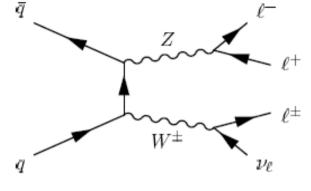
4

e.g. SU3 = SUSY benchmark 3



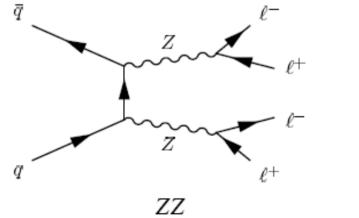
Introduction

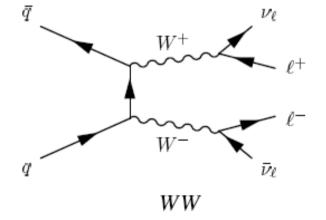

Standard Model Backgrounds


σ = 164 pb

 σ = 450 pb

ZW


3rd lepton is from b decay or lepton-jet misidentification


3 good leptons + E_T^{miss} from neutrino

 σ = 4 pb

 σ = 3 pb

 σ = 41 pb

4 good leptons but no E_{T}^{miss}

jets may fake leptons

Events/1 fb⁻¹

10²

10

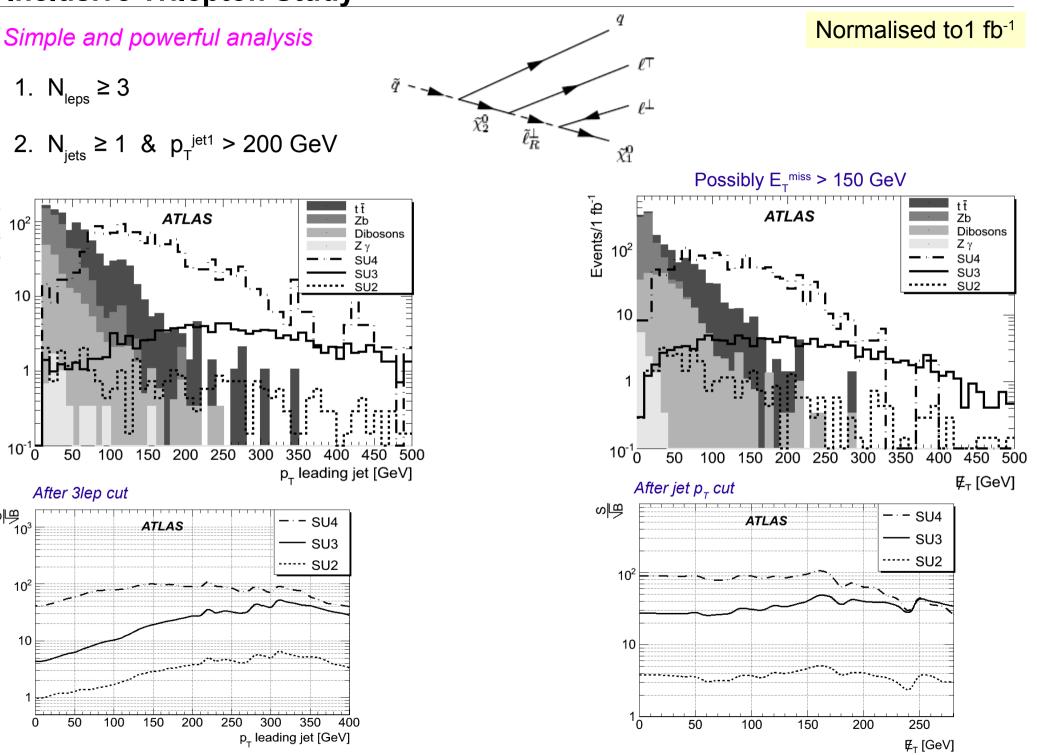
1

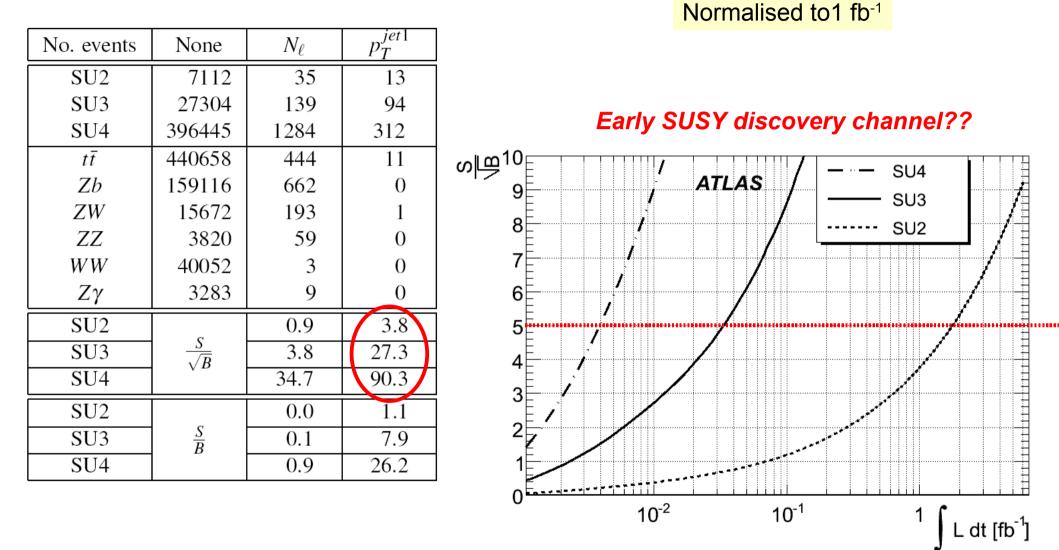
10

운

 (10^3)

10²


10


0

0

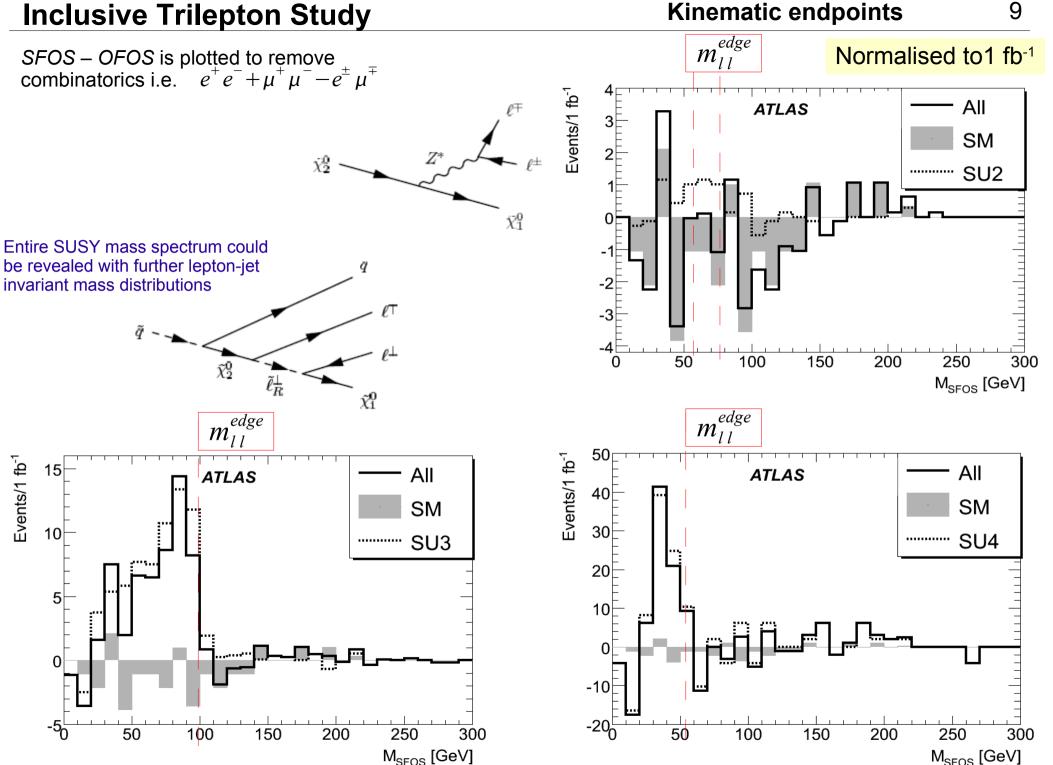
Event Selection

7

n.b. not using E_{T}^{miss} , so search is good for very early data when E_{T}^{miss} systematics may not be fully understood.

Events/1 fb⁻¹

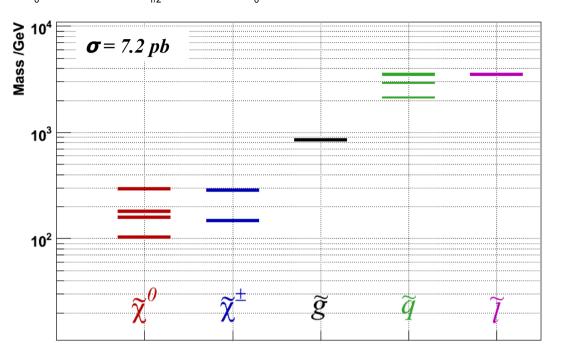
15


10

5

0

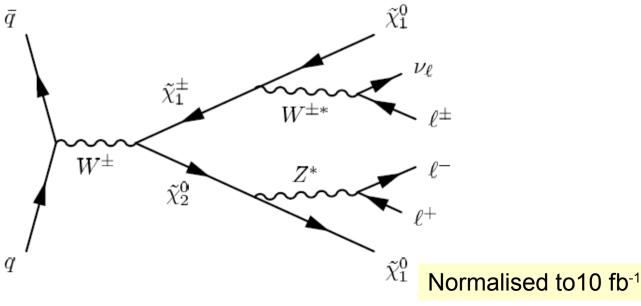
-5₀


Kinematic endpoints

Introduction

SU2

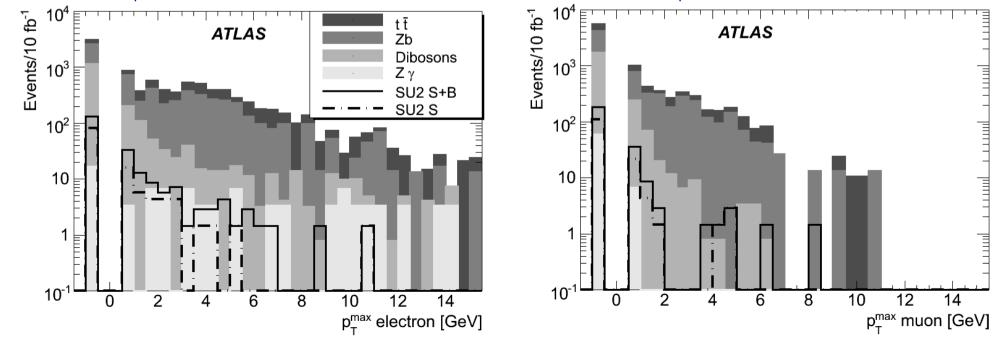
 $m_0 = 3550 \text{GeV}, m_{1/2} = 300 \text{GeV}, A_0 = 0, \tan\beta = 10, \mu > 0$



Heavy scalars are too massive so no decays through intermediate sleptons

Production	σ_{NLO} [fb]	# 3ℓ events /10 fb ⁻¹
$ ilde{\chi}^0_2 ilde{\chi}^0_3$	114.3	5
$ ilde{\chi}^0_3 ilde{\chi}^0_4$	22.8	8
$ ilde{\chi}^{\pm}_{2} ilde{\chi}^{\pm}_{2}$	217.1	40
$ ilde{\chi}_1^\pm ilde{\chi}_2^\pm$	74.0	7
$ ilde{\chi}^0_2 ilde{\chi}^\pm_1$	1449.7	212
$ ilde{\chi}^0_3 ilde{\chi}^\pm_1$	897.2	127
$ ilde{\chi}_4^0 ilde{\chi}_1^\pm$	69.0	10
$ ilde{\chi}^0_2 ilde{\chi}^\pm_2$	84.8	10
$ ilde{\chi}^0_3 ilde{\chi}^\pm_2$	78.0	12
$ ilde{\chi}_4^0 ilde{\chi}_2^\pm$	408.3	96
TOTAL		528

Direct gaugino production and decay to a trilepton final state

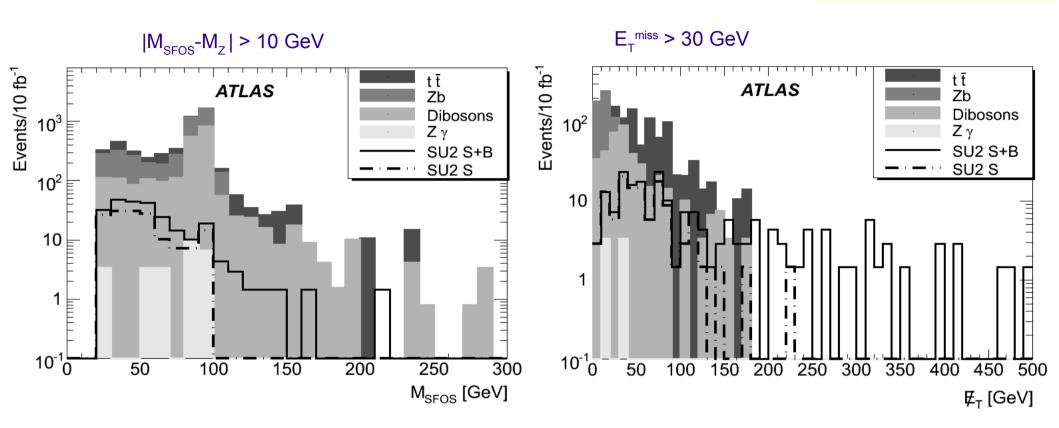

3 leptons + E_T^{miss} a "golden" SUSY channel

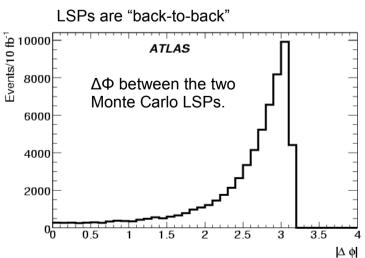
- 2. 2 SFOS leptons (e^+e^- , $\mu^+\mu^-$)
- 3. $p_T^{max} < 2 \text{ GeV}$ for electrons, $p_T^{max} < 1 \text{GeV}$ for muons in a $\Delta R = 0.2$ cone
- 4. $|M_{SEOS} M_{z}| > 10 \text{ GeV}$
- 5. $E_{\tau}^{miss} > 30 \text{ GeV}$
- 6. $p_{\tau}^{jet1} < 100 \text{ GeV}$
- 7. $IP^{norm} < 6$

Lepton track isolation:

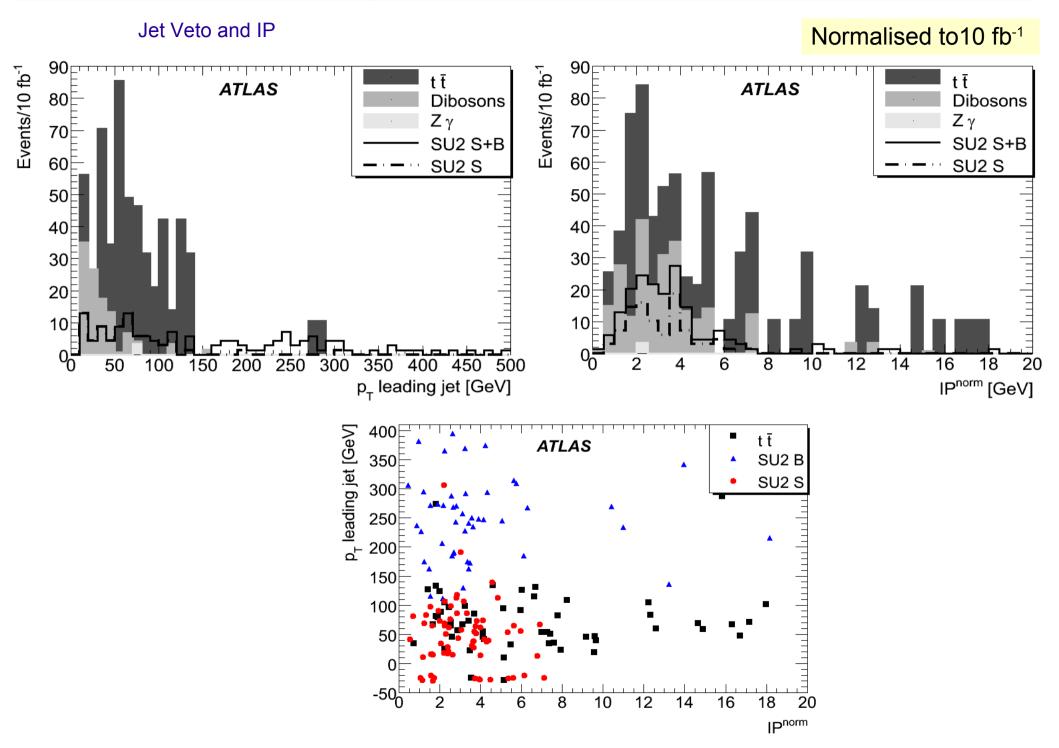
Normalised to10 fb⁻¹

14

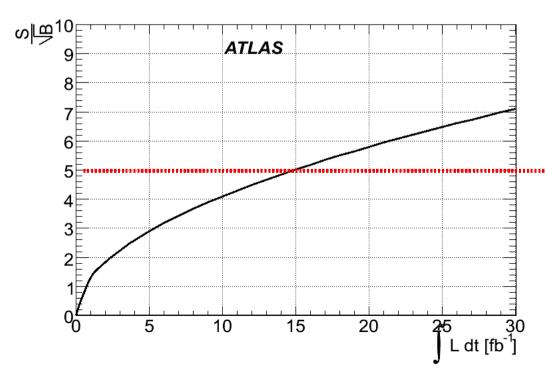

11


 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

a cone in η - ϕ space


 p_{τ}^{max} < 1 GeV for muons

Normalised to10 fb⁻¹



13

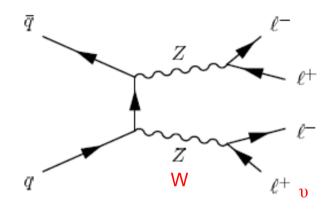
Normalised to10 fb⁻¹

No. events	None	N_ℓ	SFOS	TrackIsol	ZWindow	₽Ţ	Jet Veto	<i>IP^{norm}</i>
SU2 Signal	64037	186	178	153	120	98	87	81
SU2 Bckgnd	7081	163	127	95	85	84	0	0
tī	4406579	4440	2812	634	507	476	328	180
Zb	1591157	6616	6563	2423	386	0	0	0
ZW	156720	1927	1910	1682	322	218	214	204
ZZ	38202	589	580	476	57	13	12	11
WW	400517	33	25	8	8	8	8	0
$Z\gamma$	32832	94	91	27	7	3	3	3
	$\frac{S}{\sqrt{B}}$	1.6	1.6	2.1	3.2	3.5	3.6	4.1
	$\frac{S}{B}$	0.0	0.0	0.0	0.1	0.1	0.2	0.2

Outlook on Data Driven Background Estimations

Most dangerous backgrounds are ttbar and ZW

ttbar


use lepton flavour and sign combinations of trilepton events.

SUSY incompatible	SUSY compatible
no SFOS pair	SFOS pair
e⁺e⁺µ⁺ e⁺e⁺µ⁻ e⁻e⁻µ⁺	e⁺e⁻µ⁺ e⁺e⁻µ⁻
e⁻e⁻µ⁻	h₊h₋e₋
µ⁺µ⁺e⁺	h,h_e_
μ₋μ₋e₋	e+e-e+
μ₋μ₋e₋	e+e-e-
e ⁺ e ⁺ e ⁺	µ+h-h- h
h₋h₋h b_h,h,h,	

The number of non-compatible combinations can be used to estimate the numbers of SUSY compatible combinations and thus the ttbar background to SUSY trilepton signal

ZW

measure ZZ cross-section

Ideas

replace a lepton with a neutrino and correct for differences in cross-sections.

Summary

Inclusive trilepton signal

Simple and powerful analysis, only require 3 leptons and one high p_{τ} jet.

SU2: S $/\sqrt{B}$ = 3.8 for 1 fb⁻¹ of data **SU3**: S $/\sqrt{B}$ = 27.3 for 1 fb⁻¹ of data **SU4**: S $/\sqrt{B}$ = 90.3 for 1 fb⁻¹ of data

Early SUSY discovery channel??

Invariant mass distribution of flavor subtracted M_{SFOS} yields mass difference of lightest two neutralinos. The entire SUSY mass spectrum can be obtained from further measurements of jet-lepton invariant mass plots.

Trileptons from direct gaugino production

Stringent cuts on lepton track isolation and a jet veto S $/\sqrt{B}$ = 4.1 after 10 fb⁻¹ of data

Gaugino only SUSY discovery possible with trilepton channel

ZW and ttbar are the most dangerous backgrounds. Controlled by lepton track isolation and Z mass window removal but moderate amounts still remain. Background estimations not yet performed for trilepton analysis but ideas are already in place

Backup slide

Samples used

Sample	Generator	σ_{LO} [pb]	$\sigma_{LO} \times EF$	k	$\sigma_{NLO} \times EF$ [pb]	Sample \mathscr{L} [fb ⁻¹]
SU2	Herwig	4.9	4.9	1.5	7.2	6.9
SU3	Herwig	18.6	18.6	1.5	27.7	17.1
SU4	Herwig	262.0	262.0	1.5	402.2	0.5
tī	MC@NLO	833.0	449.8	1.0	449.8	1.0
ZZ	Herwig	11.0	2.1	1.9	3.9	12.7
ZW	Herwig	27.0	7.8	2.1	16.1	3.0
WW	Herwig	70.0	24.5	1.7	40.9	1.2
$Z\gamma$	Pythia	3.8	2.6	1.3	3.4	3.0
Zb	AcerMC	205.0	153.8	1.0	163.9	0.8

Direct gaugino selection: N-1 table

$N_L >= 3$	SFOS	TrackIsol	ZWindow	ĘT	Jet Veto	IP ^{norm}	$\frac{S}{\sqrt{B}}$
\checkmark	\checkmark	\sim	\checkmark	\checkmark	\sim	\checkmark	4.1
×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2.0
\checkmark	×	\checkmark	\checkmark		\checkmark	\checkmark	3.8
\checkmark		×	\checkmark		\checkmark	\checkmark	2.9
\checkmark		\sim	×	\checkmark	\sim		2.5
\checkmark	\sim	\sim	\sim	×	\checkmark	\sim	3.4
\sim		\sim	\sim		×		4.0
\checkmark		\sim	\checkmark		\checkmark	×	3.6