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Bs — J/v(utp)o(KTK™) Characteristics at
the LHCb.

Clean Signature: 4 charged tracks
(K*, %) originating from common
displaced 2™ vertex.

Excellent: o(7) ~ 35fs;
Kaon ID ¢(K — K) ~ 83%,;
Muon ID e(p — p) ~ 90%;

With a nominal year [ Ldt =2fb~",
we expect ~ x10'° B mesons.

m Coupled with
BFror ~ (3.941.2)x107%, means
high signal yield.

m All this implies an excellent place to
study this channel.
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Angular Analysis of Bs — J/¢¢ mode. %@

m The mode involves a pseudo-scalar decaying into two vector
mesons.

m The J/v¢ final state is therefore an admixture of CP-even and -odd
states.

m Disentangled by using the three linear polarisation states (A, |, 1) of
the vector mesons.

m The physical manifestation of these states are decay angles (6,
ow, and 0,) each having different distributions.

Decay Angles
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Angular Analysis in the Transversity basis.

m Define the angles (6y,¢1,04) within the transversity basis.
m Where 0 and ¢ are defined within the J/4 rest frame...
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Angular Analysis in the Transversity basis.

m Define the angles (6y,¢1,04) within the transversity basis.
m Where 0 and ¢ are defined within the J/4 rest frame...
m ... while 0, is defined in the ¢ rest frame.
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Decay rates
m To get good sensitivity to ¢s, at both its SM and # SM value, need
to use the full time-dependent tagged decay rates.
a’r (1) SIRCI
h O, 0
dcos 0,d cos O,dey ; (YO (e 0, 6r)
April 2, 2008



Extracting ¢s from the Bs — J/v¢¢ decay rates. %\.S,

m Good sensitivity to ¢s, at both SM and # SM value, requires using Decay rates
the full time-dependent tagged decay rates.

a®r(t)
d cos 0yd cos 0,doy

6
o< > h(t) 0¥ (0r, 04, 1)
k

m 6 angular terms give us good separate CP-even and CP-odd
components required by the time dependent terms.
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Extracting ¢s from the B; — J/¢ ¢ decay rates.

m Good sensitivity to ¢s, at both SM and # SM value, requires using
the full time-dependent tagged decay rates.

a®r(t) d
(k) (k)
dcos0,dcosl,dpy zk: () O (6r, 05, év)

m 6 angular terms give us good separate CP-even and CP-odd
components required by the time dependent terms.

m 6 time dependent terms enable us to exiract ¢s and other physics
parameters.

m Flavour tagging introduces in h®)(t) terms a dilution factor,
(1 — 2 X wiag) ~ 0.34, limiting our sensitivity to ¢s.
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Expected Sensitivity to ¢s from Bs — J/1¢
decays at LHCb.

Sensitivity to ¢s with one nominal year of data

m Perform full angular tagged time-dependent fit to extract SM o (¢s).

1 3" from 2002-07
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Expected Sensitivity to ¢s from Bs — J/1¢ L ach |
decays at LHCb. LHED

Sensitivity to ¢s with one nominal year of data

m Perform full angular tagged time-dependent fit to extract SM o (¢s).
m For a nominal year expect: 131k (signal yield),g =0.12, wiag = 0.33

(Simulation). Sensitivity
m Include detector effects: propertime resolution, acceptance and Studies

background.
m Sensitivity studies based on ~ 600 toy MC expriments.

& 05~" 2" 10"
-0.04  o(os) 0.046 0.023 0.01
m DO ' —0.57%% (stat) " § % (syst.) [2].
April 2, 2008
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Summary

|
m DO and CDF have recently measured the weak mixing phase in
Bs — J/v¢ decays:

m Their combined measurement shows possible 3o deviation of the
NP phase, ¢AF, from zero. Summary

m Using 2fb~" of data, LHCb expects to measure ¢s to a sensitivity of
0.023.

m With higher statistics, it will be LHCb’s job to make a precise
measurement of this NP phase...
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Summary

® ... and indirectly perhaps
discover new particles.
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m Summary of Selection Cuts (applied cuts in red)

| Particle | Cuton { DCO6 data | 9%
mu* AINLyx >-20 -
K* Aln Lkr >0 -
K=, u* P: MeV/c > 750 67, 28
J/ % <6 27
¢
e <40 32
AM, MeV/c? +28 87
Bs 2 <225 20
AMs, + 100 MeV//c? (tight) 3
+ 1000 MeV/c? (Loose)

m Selection: ege) ~ 10%.
| Trigger: €0 ~ 93%, eqr ~ 63%.
B €t ~ 1.98%. April £
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CP violation in the SM

m In the SM the strengh of quark mixing is encoded in the

CKM matrix.
m 3 generations implies 1 phase the source of C# in the quark
sector.
The CKM Matrix
1—1/2)3% + IX* A AN(p — in)
A+ TANNE RN (ptin) 1 — 124 1081 —2m?) AX?
AN3(1 — p — if)) —AN + AXY(L —p—in) 1— 1A

April 2, 2008
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ViV ViV
V.V, o0 VeV
» Re
0 X 10
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0] g o
April 2, 2008



Defining the s Unitarity Triangle %@

X N N Bs mixing
s) unitarity triangle
. ) . Im
m (s is the small angle occuring in A
squashed (sb) UT.
VsV, b vts th
LS +1+vv*—0
V.V ViV
v V| o1 VeVi
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o . 2 Bs mixing
s) unitarity triangle
. ) . Im
m (s is the small angle occuring in A
squashed (sb) UT.
Vus Vip VisVib _
u Vcsv“* +1+ VoV = 0.
m B.=arg <_ VtsV(b ) stvab . Vts_Vib
V Vgl PN VeV
» R
0 X 1.0 ¢
April 8
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- - - Bs mixing
unitarity triangle
. . . Im
m (s is the small angle occuring in A
squashed (sb) UT.
VsV, b vts tb
A = =0
VsV, g ;
L Bs_arg( ’S"’) ~ NP VeV - ede
V V| P01 VeV
» R
0! kﬁ‘ 1,0 ¢
April 2, 2008
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- - - Bs mixing
unitarity triangle
. . . Im
m (s is the small angle occuring in A
squashed (sb) UT.
VsV, b Vis Vi b
_ vcsv“*+1+vvt*—0
= ﬁS = arg < VtsV(b ) ~ )\2,,] VCSV:ib ) ‘V:s Vib‘
V V| P01 VeV
q . » Re
m Hence in SM s is doubly 0] e, 10
Cabibbo suppressed:
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Defining the s Unitarity Triangle %@

N N X Bs mixing
unitarity triangle
. ) . Im
m (s is the small angle occuring in A
squashed (sb) UT.
= ‘\;Z:v“*b 1+ \‘//tsvtf =0.
B s = arg( V’S‘/'b) ~ N\ ViV Vie Ve,
V Vgl PN VeV
» Re
m Hence in SM g3 is doubly 0, X 10
Cabibbo suppressed:
B O(0.02)radians orO(1°).
April 2, 2008
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Neutral Bs SyStem s mixing
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o T l\WM M) Em T \BY))
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B. mixi
Neutral Bs SyStem s mixing

m The time evolution of the Bs flavor eigenstates described by the
Schodringer equation:

AB=2 (M Mg\ (T Ti 1B9)
o WM M 2\l T 1BS))’

where,
Mz = (BY|H&F2|BY) = [Miz| €Mz, Typ = |[yp| €%

[ Diagonalize the mass (M) and decay (I') matrices gives...

. the mass eigenstates: _
|B°> pIBY) + q|BY),1BY) = p|BY) — q|BY).

April 2, 2008
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Bs mixing
Neutral Bs system
m Flavor eigenstates differ from mass eigenstates & mass
eigenvalues are different: (Ams = My — My =~ 2 |Ms2|).
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Bs mixing
Neutral Bs system

m Flavor eigenstates differ from mass eigenstates & mass

eigenvalues are different: (Ams = My — My = 2 |M3)).
m B:; oscillate with a frequency 17.77+0.12ps~". (CDF).
m mass eigenstates have different decay widths:

ATs =T, — Ty = 2|12| cos(¢s)
m Here ¢s = arg — (%) ~4x 1072,

April 2, 2008
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Bs mixing

Reduced angular decay rates.

m 0 give considerable discriminating power bewteen CP-even and
-odd states, and

or [B2(t) — J/vd]
d cos Oy

(1410 + o0 301 + 08201+ (14 (O sinr
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Physics potential of the Bs — J/v¢ decay L aCD)]

()
rates. HCh

Bs mixing

Reduced angular decay rates.

m 0 give considerable discriminating power bewteen CP-even and
-odd states, and

m simplifies our expressions:

or [B2(t) — J/vd]
d cos Oy

(1410 + o0 301+ cos201) + (1AL (D) sinor

April 2, 2008



Reduced angular decay rates RO

Bs mixing
unTagging

ar(t) N ar(t)
dcosfy  dcosby
(1= RL)[(1 + cos(¢s))e™ " + (1 — cos(¢s))e "

2" sin(Amst) sin(¢s)]1§(1 + cos? Oy)

R.[(1 — cos(¢s))e "t + (1 + cos(¢ps))e "
26" sin(Amst) sin(ps)] sin® O

April 2, 2008



Reduced angular decay rates %{S’

Tagglng Bs mixing

m Procedure by which we identify the B meson flavor at production.
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Reduced angular decay rates %{Sﬂ

Tagging Bs mixing

m Procedure by which we identify the B meson flavor at production.

m Inputed from Bs — Dsm decays: €rag ~ 57%, wiag ~ 33%

dr(t) ar ()

cosfy 9 dcosly,
(1= RL)[(1 +cos(¢s))e™ ' + (1 — cos(¢s))e™ '
2(1 — 2wiag)e” ! sin(Amst) sin(¢s)]%(1 + cos® Oy)
R.[(1 — cos(¢s))e " + (1 + cos(¢s))e "

— 2(1 — 2uwiag)e " sin(Amst) sin(¢s)] sin? O

(1 - U.)[ag) d

April 2, 2008



Physics potential of the Bs — J/¢¢ decay L ach

s,
rates. PHED

Bs mixing

Tagged full angular decay rate

APr(t) (1)

(1 = wie0) Goos By dicos 0udpn | 9 dcos 0, d cos 0,y

9
32r [‘AO(f)|?age1 (Orr, 06, $1r) + | Ay (D) 2g©® (01, 05, b1r)
—|—|AJ_ |?ages(0ff7 9¢, ¢tr) I %(Aﬂ (t)AJ_(t))tage4(0tr7 0¢: ¢ff)+

R(A (DA ()iag© (O, 05, &) + S(AS(DAL(1))iag®° (O, 0, 6|
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Physics potential of the Bs — J/¢¢ decay L ach

s,
rates. PHED

The time dependent terms %

aPr(t) a°(t)

1—
(1 —wiag) o5 0rdcos 0,00 | “®dcos by dcos 0,ddy

9
> | . oo - 0.

.- - . )
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Physics potential of the Bs — J/¢¢ decay L ach

s,
rates. PHED

The time dependent terms %

aPr(t) a°(t)

(1 = wieo) G By cos 0addn | “9 dcos 0, dcos Oydpy

9
> | . oo - 0.

.- - . )

m Information to extract ¢s, Al's, Ams, wiag.
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Physics potential of the Bs — J/¢¢ decay L ach

()
rates. THGH

The Angular dependent terms Bs mixing

(1 — wiag) a®r(t) o aeT (1) N
9/ 0 cos 0y d cos Osdoy 20 dcos Oy d cos 0,dpy

9
307 [|Ao(f)tag\2 ©' (01, 05, d1r) + A (t)1ag® ©%(Orr, 00, brr) +
|AL(t)|%g ©%(Orr, 06, d1r) + S(A[(DAL(E))1ag ©*(Orr, 09, S1r) +

R(AS (DA (1)tag ©°(01r, 05, D) + S(As(H)AL(L))rag ©%(Orr, 0, b1r)

April 2, 2008
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The Angular dependent terms SETTT

(1 — wiag) a®r(t) o aeT (1) N
“189) 4 cos 0y d cos Oy ddy | %9 d cos 0y d cos 05 ddr

9
307 [|Ao(f)tag\2 ©' (01, 05, d1r) + A (t)1ag® ©%(Orr, 00, brr) +
|AL(t)|%g ©%(Orr, 06, d1r) + S(A[(DAL(E))1ag ©*(Orr, 09, S1r) +

R(AS (DA (1)tag ©°(01r, 05, D) + S(As(H)AL(L))rag ©%(Orr, 0, b1r)

m Information to distinguish CP-even and -odd states.
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N Bs mixing
Time dependent real terms

CP-even »
Aoy (gl = o111 1 cos ) et + (1 cos ) e
+2(1 - 2wtag)e‘rst sin(Amst) sin ¢s}
C’P-odd
— A 2
|AL(Dwgl? = % {(1 —CoS ps) € " 4 (1 + cos ps) e !

-2(1- 2wtag)e‘FS’ sin(Amst) sin ¢s}
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Time dependent real terms Bs mixing

CP-even

— Ao 1(0)rag|?
|A0,H(t)tag|2 = M{(1+C05¢5)97F‘Z+W

+2(1 — 2wy Dot Amgt) sin ¢s}

CP-odd
P S A (0 2
Ac(tragf = POl cosgeye T4 (1 1 cosge) e

— 2(1 — 2wig)e="LSiN(Amst) sin gbs}

If s SM like, sensitivity to lifetimes, need interference terms.
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Bs mixing

Time dependent imaginary interference terms

Im{AT(DAL (D)}

= 1A (0)]|AL(0)]ag |

(1 — 2wiag)e™"*" sin 61 cos(Amst) — cos & sin(Amst) cos és

_ % (e*rH' - e*rL’) €0s &7 sin ¢s]

tag

Im{Ao (DAL(1)} g = IAo(O)IIAL(O)Itag[

(1 — 2wrag)e™"*" sin 62 cos(Amst) — cos 0z sin(Amst) cos ¢s
1

-2 (e—rH‘ _ e‘rL’) cos o sin qSS]
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Time dependent imaginary interference terms
Bs mixing

Im{AT (DAL (1))

= A (O)]|AL(0)]ag |

(1 — 2urag) €™ "*'sin &; cos(Amst) — cos 61 sin(Amst)cos bs

1 _ _ o
—3 (e fut _ e r”) COS &1 Sin ¢ »5]

tag

Im{As()AL(1)}1ag = IAo(O)IIAL(O)Irag[

(1 — 2uwiag)e™ "*'sin 0. cos(Amst) — cos 0> sin(Amst) cos ¢
1

—5 (e‘r“t — e‘rL‘) C0S &, sin US]
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Time dependent imaginary interference terms
Bs mixing

Im{AT (DAL (1))

= A (O)]|AL(0)]ag |

(1 — 2urag) €™ "*'sin &; cos(Amst) — cos 61 sin(Amst)cos bs

1 _ _ o
—3 (e fut _ e r”) COS &1 Sin ¢ »5]

tag

IM{Ag()AL(t)}1ag = |AO(0)||AL(0)|tag[
(1 — 2uwiag)e™ "*'sin 0. cos(Amst) — cos 0> sin(Amst) cos ¢
1

—5 (e‘r“t — e‘rL‘) C0S &, sin US]

m delta’s separated from ¢, possible to fit for ¢s and the delta’s.

April 2, 2008



Physics potential of the Bs — J/¢¢ decay L ach

()
rates. HCh

Time dependent imaginary interference terms
Bs mixing

IM{AT(AL(D)} 5y = 141 (O)]|AL (O)]tag |

(1 — 2uwrag)e™ "' cos(Amst) — sin(Amst)
3t i)

IM{Ag()AL(t)}1ag = |A0(0)||AL(0)|tag[

(1 — 2wiag)e™ "™ cos(Amst) — sin(Amst) cos

-3 - sronal

m delta’s separated from ¢, possible to fit for ¢s and the delta’s.

m Interference terms give sensitivity to ¢s if SM value and additional
terms if ps # SM value. April 2, 2008
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Bs mixing

Simultaneous Fits including: 61,2, ¢s and wiag

m Why should it be possible to fit for 41 2, ¢s and weg using full tagged
decay rates.

m [f ¢s close to SM value: Im terms can be recast too:
(1 — 2wiag) x sin(d — Amst).

m Simultaneous fit now possible since fit can separately determine:
the period (Ams), off-set (§) and amplitude (1-2wtag).

m Similar (but more complated) argument holds if ¢s # SM value: Im
terms now recast too:
u (1—22Wtag) %

(1 + cos ¢s) sin(d — Amst) + (1 — cos ¢s) sin(é + Amgt).
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Figure: Including Detector effects
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Figure: Not Including Detector effects



Variation studies of ¢ sensitivity to ¢ %\?

Bs mixing
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Figure: The effect on ¢s sensitivity o(¢s) when the central value of ¢s is
changed. Left: using reduce and Right: using full angular decay rates.
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