

Sensitivity to the mixing phase from $B_s \rightarrow J/\psi \phi$ decays at LHCb.

Colin Mclean

School of Physics & Astronomy, University of Edinburgh. IOP Conference

April 2, 2008

Physics Activation

D_S IIIIXIIIY

Decay rates

Sensitivity Studies

Physics Motivation for the $B_s \rightarrow J/\psi \phi$ mode.

■ The SM B_s mixing phase is, ~-0.04±0.01, meaning any significate deviation will indicate NP.

Physics Motivation

os mixing

Decay rates

Sensitivity Studies

Physics Motivation for the $B_s \to J/\psi \phi$ mode.

- The SM B_s mixing phase is, ~-0.04±0.01, meaning any significate deviation will indicate NP.
- Recent combined CDF and D0 measurements with $B_s \rightarrow J/\psi \phi$ indicate possible 3.7σ [1] deviation of B_s mixing phase from its SM value.

Physics Motivation

B_S mixing

Decay Angle

Decay rates

Sensitivity

Studies

Physics Motivation for the $B_s \rightarrow J/\psi \phi$ mode.

- The SM B_s mixing phase is, ~-0.04±0.01, meaning any significate deviation will indicate NP.
- Recent combined CDF and D0 measurements with $B_s \rightarrow J/\psi \phi$ indicate possible 3.7σ [1] deviation of B_s mixing phase from its SM value.
- This may already disfavour some extensions of the SM: Minimum Flavour Violation.

Physics Motivation B_S mixing Decay Angle

> Sensitivity Studies

Physics Motivation for the $B_s \to J/\psi \phi$ mode.

- The SM B_s mixing phase is, ~-0.04±0.01, meaning any significate deviation will indicate NP.
- Recent combined CDF and D0 measurements with $B_s \rightarrow J/\psi \phi$ indicate possible 3.7σ [1] deviation of B_s mixing phase from its SM value.
- This may already disfavour some extensions of the SM: Minimum Flavour Violation.
- We can obtain B_s mixing phase by performing a time-dependent tagged angular analysis:

Physics Motivation B_S mixing Decay Angle Decay rates Sensitivity Studies

Physics Motivation for the $B_s \to J/\psi \phi$ mode.

- The SM B_s mixing phase is, ~-0.04±0.01, meaning any significate deviation will indicate NP.
- Recent combined CDF and D0 measurements with $B_s \rightarrow J/\psi \phi$ indicate possible 3.7σ [1] deviation of B_s mixing phase from its SM value.
- This may already disfavour some extensions of the SM: Minimum Flavour Violation.
- We can obtain B_s mixing phase by performing a time-dependent tagged angular analysis:

$$\begin{aligned} |A(t)|^2 &\approx |A(0)|^2 \left[e^{-\Gamma_{\rm L} t} + e^{-\Gamma_{\rm H} t} \right. \\ &+ 2 \left. (1 - 2\omega_{\rm tag}) \right. \left. e^{-\bar{\Gamma}_{\rm S} t} \right. \left. \sin(\Delta m_{\rm S} t) \right. \left. \left. \frac{\sin \phi_{\rm S}}{} \right. \end{aligned}$$

Motivation B_s mixing Decay Ang

Physics

Decay rate

Studies

April 2, 2008

$B_s \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ Characteristics at the LHCb.

 Clean Signature: 4 charged tracks (K[±],μ[±]) originating from common displaced 2nd vertex.

Physics Motivation

 B_s mixing

Decay Angle

ecay rates

Studies

$B_s \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ Characteristics at the LHCb.

- Clean Signature: 4 charged tracks
 (K[±],μ[±]) originating from common
 displaced 2nd vertex.
- **Excellent**: $\sigma(\tau) \sim 35 fs$;
- Kaon ID $\epsilon(K \rightarrow K) \sim 83\%$;
- Muon ID $\epsilon(\mu \rightarrow \mu) \sim 90\%$;
- With a nominal year $\int \mathcal{L}dt = 2fb^{-1}$, we expect $\sim \times 10^{10} \ B_s$ mesons.
- Coupled with $\mathcal{BF}_{TOT} \sim (3.9 \pm 1.2) \times 10^{-5}$, means high signal yield.
- All this implies an excellent place to study this channel.

Physics Motivation

_ . . .

Decay rates

Sensitivity Studies

April 2, 2008

Physics Motivation

B_s mixing

Decay Angles

Decay rates

Sensitivity Studies

- In the B_s-system, the phenomenon of neutral meson mixing proceeds via the box diagrams.
- This allows B_s to oscillate into \bar{B}_s before decaying into $J/\psi\phi$:

 \bar{s} V_{ts}^* $\bar{u}, \bar{c}, \bar{t}$ V_{tb} \bar{b} \bar{b} \bar{b} \bar{b} V_{tb} V_{tb} V_{tb} V_{tb} V_{tc} V_{ts} V_{ts}

Physics Motivation

B_s mixing

Decay rates

Sensitivity Studies

- In the B_s-system, the phenomenon of neutral meson mixing proceeds via the box diagrams.
- This allows B_s to oscillate into \bar{B}_s before decaying into $J/\psi\phi$:

 \bar{s} V_{ts}^* $\bar{u}, \bar{c}, \bar{t}$ V_{tb} \bar{b} \bar{b} \bar{b} \bar{b} V_{tb} V_{tb} V_{tb} V_{tb} V_{tc} V_{ts} V_{ts}

Physics Motivation

B_s mixing

Decay rates

Sensitivity Studies

- In the B_s-system, the phenomenon of neutral meson mixing proceeds via the box diagrams.
- This allows B_s to oscillate into \bar{B}_s before decaying into $J/\psi\phi$: via tree decays, or

Physics Motivation

B_s mixing

Decay rates

Sensitivity Studies

- In the *B_s*-system, the phenomenon of neutral meson mixing proceeds via the box diagrams.
- This allows B_s to oscillate into \bar{B}_s before decaying into $J/\psi\phi$: via tree decays, or via penguin decays.

Physics Motivation

B_s mixing

Decay rates

Sensitivity Studies

- In the B_s-system, the phenomenon of neutral meson mixing proceeds via the box diagrams.
- This allows B_s to oscillate into \bar{B}_s before decaying into $J/\psi\phi$: via tree decays, or via penguin decays.
- Penguin strongly Cabibbo suppressed, so tree decays dominate.

Physics Motivation

B_s mixing

Decay rates

Sensitivity Studies

- In the B_s-system, the phenomenon of neutral meson mixing proceeds via the box diagrams.
- This allows B_s to oscillate into \bar{B}_s before decaying into $J/\psi\phi$: via tree decays, or via penguin decays.
- Penguin strongly Cabibbo suppressed, so tree decays dominate.
- The \mathcal{CP} phase entering $B_s \to J/\psi \phi$ decays occurs via the interference between mixing and non-mixing decays,

B_s mixing

- In the B_s-system, the phenomenon of neutral meson mixing proceeds via the box diagrams.
- This allows B_s to oscillate into \bar{B}_s before decaying into $J/\psi\phi$: via tree decays, or via penguin decays.
- Penguin strongly Cabibbo suppressed, so tree decays dominate.
- The CP phase entering $B_s \to J/\psi \phi$ decays occurs via the interference between mixing and non-mixing decays,

$$\phi_s = -2\beta_s$$

hysics Intivation

B_s mixing

Deservedes

Concitivity

Studies

ummary

pril 2, 2008

- In the B_s-system, the phenomenon of neutral meson mixing proceeds via the box diagrams.
- This allows B_s to oscillate into \bar{B}_s before decaying into $J/\psi\phi$: via tree decays, or via penguin decays.
- Penguin strongly Cabibbo suppressed, so tree decays dominate.
- The CP phase entering $B_s \to J/\psi \phi$ decays occurs via the interference between mixing and non-mixing decays,

$$\phi_{s} = -2\beta_{s} + \phi^{NP}$$

nysics lotivatior

B_s mixing

Decay rates

Sensitivity Studies

ummary

pril 2, 2008

 The mode involves a pseudo-scalar decaying into two vector mesons. Physics Motivation

Decay Angles

Sensitivity Studies

- The mode involves a pseudo-scalar decaying into two vector mesons.
- The $J/\psi\phi$ final state is therefore an admixture of \mathcal{CP} -even and -odd states.

Physics Motivation

Decay Angles

Sensitivity

- The mode involves a pseudo-scalar decaying into two vector mesons.
- The $J/\psi\phi$ final state is therefore an admixture of \mathcal{CP} -even and -odd states.
- Disentangled by using the three linear polarisation states $(A_{o,\parallel,\perp})$ of the vector mesons.

Motivation

Decay Angles

Sensitivity

- The mode involves a pseudo-scalar decaying into two vector mesons.
- The $J/\psi\phi$ final state is therefore an admixture of \mathcal{CP} -even and -odd states.
- Disentangled by using the three linear polarisation states $(A_{o,\parallel,\perp})$ of the vector mesons.
- The physical manifestation of these states are decay angles , each having different distributions.

Notivation

Decay Angles

Decesis retes

Sensitivity Studies

- The mode involves a pseudo-scalar decaying into two vector mesons.
- The $J/\psi\phi$ final state is therefore an admixture of \mathcal{CP} -even and -odd states.
- Disentangled by using the three linear polarisation states $(A_{o,\parallel,\perp})$ of the vector mesons.
- The physical manifestation of these states are decay angles (θ_{tr} , each having different distributions.

Pnysics Motivatior

Decay Angles

Sensitivity

- The mode involves a pseudo-scalar decaying into two vector mesons.
- The $J/\psi\phi$ final state is therefore an admixture of \mathcal{CP} -even and -odd states.
- Disentangled by using the three linear polarisation states $(A_{o,\parallel,\perp})$ of the vector mesons.
- The physical manifestation of these states are decay angles (θ_{tr} , ϕ_{tr} , and θ_{ϕ}) each having different distributions.

hysics Motivation

Decay Angles

Sensitivity

uules

pril 2, 2008

Angular Analysis in the Transversity basis.

- Define the angles $(\theta_{tr}, \phi_{tr}, \theta_{\phi})$ within the transversity basis.
- Where θ_{tr} and ϕ_{tr} are defined within the J/ψ rest frame...

Physics Motivation

s_s mixing

Decay Angles

Decay rates

Sensitivity Studies Summary

Angular Analysis in the Transversity basis.

- Define the angles $(\theta_{tr}, \phi_{tr}, \theta_{\phi})$ within the transversity basis.
- Where θ_{tr} and ϕ_{tr} are defined within the J/ψ rest frame...
- \blacksquare ... while θ_{ϕ} is defined in the ϕ rest frame.

hysics Motivation

Decay Angles

Decay rates

Sensitivity Studies

Physics Motivation

s mixing

Decay rates

Sensitivity Studies

il 2, 2008

■ To get good sensitivity to ϕ_s , at both its SM and $\neq SM$ value, need to use the full time-dependent tagged decay rates.

$$\frac{d^3\Gamma(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}}\propto\sum_{k}^{6}h^{(k)}(t)\Theta^{(k)}(\theta_{tr},\theta_{\phi},\phi_{tr})$$

hysics *N*otivation

-3

3.

Decay rates

Sensitivit

■ Good sensitivity to ϕ_s , at both *SM* and \neq *SM* value, requires using the full time-dependent tagged decay rates.

$$\frac{d^3\Gamma(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} \propto \sum_{k}^{6} h^{(k)}(t) \frac{\Theta^{(k)}(\theta_{tr},\theta_{\phi},\phi_{tr})}{\Theta^{(k)}(\theta_{tr},\theta_{\phi},\phi_{tr})}$$

 6 angular terms give us good separate CP-even and CP-odd components required by the time dependent terms. nysics Notivation

25g

Decay rates

Studies

■ Good sensitivity to ϕ_s , at both *SM* and \neq *SM* value, requires using the full time-dependent tagged decay rates.

$$\frac{d^3\Gamma(t)}{d\cos\theta_t d\cos\theta_\phi d\phi_{tt}} \propto \sum_{k}^6 \frac{h^{(k)}(t)}{\theta^{(k)}(\theta_{tt},\theta_\phi,\phi_{tt})}$$

- 6 angular terms give us good separate \mathcal{CP} -even and \mathcal{CP} -odd components required by the time dependent terms.
- 6 time dependent terms enable us to extract ϕ_s and other physics parameters.

Pnysics Motivatior

25

2

Decay rates

Sensitivit Studies

summary

• Good sensitivity to ϕ_s , at both *SM* and \neq *SM* value, requires using the full time-dependent tagged decay rates.

$$\frac{d^3\Gamma(t)}{d\cos\theta_t d\cos\theta_\phi d\phi_{tt}} \propto \sum_{k}^6 \frac{h^{(k)}(t)}{|h^{(k)}(t)|} \Theta^{(k)}(\theta_{tt},\theta_\phi,\phi_{tt})$$

- 6 angular terms give us good separate CP-even and CP-odd components required by the time dependent terms.
- 6 time dependent terms enable us to extract ϕ_s and other physics parameters.
- Flavour tagging introduces in $h^{(k)}(t)$ terms a dilution factor, $(1-2\times\omega_{tag})\sim0.34$, limiting our sensitivity to ϕ_s .

Decay rates

Sensitivity to ϕ_s with one nominal year of data

■ Perform full angular tagged time-dependent fit to extract SM $\sigma(\phi_s)$.

Physics Motivation

s mixing

ay Angle.

Sensitivity Studies

mmary

 $^{^{1}\}sim 3 \text{fb}^{-1} \text{ from 2002-07}$

Sensitivity to ϕ_s with one nominal year of data

- Perform full angular tagged time-dependent fit to extract SM $\sigma(\phi_s)$.
- For a nominal year expect: 131k (signal yield), $\frac{B}{S} = 0.12$, $\omega_{tag} = 0.33$ (Simulation).

Motivation

D_S IIIXIIIg

Sensitivity Studies

ımmarv

 $^{^{1}\}sim 3 fb^{-1}$ from 2002-07

Sensitivity to ϕ_s with one nominal year of data

- Perform full angular tagged time-dependent fit to extract *SM* $\sigma(\phi_s)$.
- For a nominal year expect: 131k (signal yield), $\frac{B}{S} = 0.12$, $\omega_{tag} = 0.33$ (Simulation).
- Include detector effects: propertime resolution, acceptance and background.

Physics Motivation

25

Decay rates

Sensitivity Studies

 $^{^{1}\}sim 3 \text{fb}^{-1} \text{ from 2002-07}$

Sensitivity to ϕ_s with one nominal year of data

- Perform full angular tagged time-dependent fit to extract *SM* $\sigma(\phi_s)$.
- For a nominal year expect: 131k (signal yield), $\frac{B}{S} = 0.12$, $\omega_{tag} = 0.33$ (Simulation).
- Include detector effects: propertime resolution, acceptance and background.
- \blacksquare Sensitivity studies based on \sim 600 toy MC expriments.

Physics Motivatior

-5g

Sensitivity Studies

Summarv

 $^{^{1}\}sim 3 \text{fb}^{-1} \text{ from 2002-07}$

Sensitivity to ϕ_s with one nominal year of data

- Perform full angular tagged time-dependent fit to extract *SM* $\sigma(\phi_s)$.
- For a nominal year expect: 131k (signal yield), $\frac{B}{S} = 0.12$, $\omega_{tag} = 0.33$ (Simulation).
- Include detector effects: propertime resolution, acceptance and background.
- \blacksquare Sensitivity studies based on \sim 600 toy MC expriments.

$$\phi_s^{SM}$$
 0.5 fb^{-1} 2 fb^{-1} 10 fb^{-1} -0.04 $\sigma(\phi_s)$ 0.046 0.023 0.01

■ D0 1 $-0.57^{+0.24}_{-0.3}(stat)^{+0.07}_{-0.02}(syst.)$ [2].

nysics Notivation

og mixing

2

Sensitivity Studies

 $^{^{1}}$ $\sim 3 fb^{-1}$ from 2002-07

Summary

■ D0 and CDF have recently measured the weak mixing phase in $B_s \to J/\psi \phi$ decays:

Physics Motivation

Nagari America

Docay rates

Sensitivity Studies

- D0 and CDF have recently measured the weak mixing phase in $B_s \rightarrow J/\psi \phi$ decays:
- Their combined measurement shows possible 3σ deviation of the *NP* phase, ϕ_s^{NP} , from zero.

'hysics ⁄lotivation

_ . .

. .

Sensitivity

- D0 and CDF have recently measured the weak mixing phase in $B_s \rightarrow J/\psi \phi$ decays:
- Their combined measurement shows possible 3σ deviation of the NP phase, ϕ_s^{NP} , from zero.
- Using $2fb^{-1}$ of data, LHCb expects to measure ϕ_s to a sensitivity of 0.023.

nysics Iotivation

-3

_ .

Sensitivity

- D0 and CDF have recently measured the weak mixing phase in $B_s \rightarrow J/\psi \phi$ decays:
- Their combined measurement shows possible 3σ deviation of the NP phase, ϕ_s^{NP} , from zero.
- Using $2fb^{-1}$ of data, LHCb expects to measure ϕ_s to a sensitivity of 0.023.
- With higher statistics, it will be LHCb's job to make a precise measurement of this NP phase...

nysics Notivation

259

Deservedes

Sensitivity Studies

 ... and indirectly perhaps discover new particles.

hysics Activation

B_s mixing

Doggy rates

Sensitivity Studies Summary

pril 2, 2008

References

- 1 UT FIT, First Evidence for NP in $b \rightarrow s$ transisions, arXi0803.0659v1, 2008.
- 2 DO, Measurement of B_s^0 mixing paramters from the flavor-tagged decay $B_s \to J/\psi \phi$, arXiv:0802.2255v1, 2008.
- 3 CDF, First Flavor tagged Determination of Bounds on Mixing induced CP violation in $B_s \rightarrow J/\psi \phi$, arXiv:0712.2397v1, 2007.

nysics Notivation

Docay rates

Sensitivity Studies

Summary of Selection Cuts (applied cuts in red)

Particle	Cut on	DC06 data	$\epsilon_{\it sel}^{\it sig}$ %
mu [±]	$\Delta \ln \mathcal{L}_{\mu\pi}$	> -20	-
K^{\pm}	$\Delta \ln \mathcal{L}_{K\pi}$	> 0	-
K^{\pm}, μ^{\pm}	P _t MeV/c	> 750	67, 28
J/ψ	χ^2	< 6	27
	$\Delta M_{J/\psi} \; MeV/c^2$	± 85	20
φ			
	χ^2	< 40	32
	$\Delta M_{\phi} \; MeV/c^2$	± 28	87
Bs	χ^2	< 22.5	20
	ΔM_{B_s}	\pm 100 MeV/c^2 (tight)	3
		\pm 1000 MeV/c^2 (Loose)	

Summary of Selection Cuts (applied cuts in red)

Particle	Cut on	DC06 data	$\epsilon_{\it sel}^{\it sig}$ %
mu [±]	$\Delta \ln \mathcal{L}_{\mu\pi}$	> -20	-
K^{\pm}	$\Delta \ln \mathcal{L}_{K\pi}$	> 0	-
K^{\pm}, μ^{\pm}	$P_t MeV/c$	> 750	67, 28
J/ψ	χ^2	< 6	27
	$\Delta M_{J/\psi}~MeV/c^2$	± 85	20
φ			
	χ^2	< 40	32
	$\Delta M_{\phi}~MeV/c^2$	± 28	87
Bs	χ^2	< 22.5	20
	ΔM_{B_s}	\pm 100 MeV/c^2 (tight)	3
		\pm 1000 MeV/c^2 (Loose)	

■ Selection: $\epsilon_{sel} \sim 10\%$.

- mixina

Summary of Selection Cuts (applied cuts in red)

Particle	Cut on	DC06 data	$\epsilon_{\it sel}^{\it sig}\%$
mu^{\pm}	$\Delta \ln \mathcal{L}_{\mu\pi}$	> -20	-
K^{\pm}	$\Delta \ln \mathcal{L}_{K\pi}$	> 0	-
K^{\pm}, μ^{\pm}	$P_t MeV/c$	> 750	67, 28
J/ψ	χ^2	< 6	27
	$\Delta M_{J/\psi}~MeV/c^2$	± 85	20
φ			
	χ^2	< 40	32
	$\Delta M_{\phi}~MeV/c^2$	± 28	87
Bs	χ^2	< 22.5	20
	ΔM_{B_s}	\pm 100 MeV/c^2 (tight)	3
		\pm 1000 MeV/c^2 (Loose)	

■ Selection: $\epsilon_{sel} \sim 10\%$.

■ Trigger: $\epsilon_{L0} \sim 93\%$, $\epsilon_{HLT} \sim 63\%$.

mixing

Summary of Selection Cuts (applied cuts in red)

Particle	Cut on	DC06 data	$\epsilon_{sel}^{sig}\%$
mu^\pm	$\Delta \ln \mathcal{L}_{\mu\pi}$	> -20	-
K^{\pm}	$\Delta \ln \mathcal{L}_{K\pi}$	> 0	-
K^{\pm}, μ^{\pm}	$P_t MeV/c$	> 750	67, 28
J/ψ	χ^2	< 6	27
	$\Delta M_{J/\psi}~MeV/c^2$	± 85	20
φ			
	χ^2	< 40	32
	$\Delta M_{\phi} \; MeV/c^2$	± 28	87
Bs	χ^2	< 22.5	20
	ΔM_{B_s}	\pm 100 MeV/c^2 (tight)	3
		\pm 1000 MeV/c^2 (Loose)	

■ Selection: $\epsilon_{sel} \sim 10\%$.

■ Trigger: $\epsilon_{L0} \sim 93\%$, $\epsilon_{HLT} \sim 63\%$.

 $\epsilon_{tot} \sim 1.98\%$.

s mixina

CP violation in the SM

CP violation in the SM

■ In the *SM* the strengh of quark mixing is encoded in the CKM matrix.

e mixina

CP violation in the SM

- In the SM the strengh of quark mixing is encoded in the CKM matrix.
- 3 generations implies 1 phase the source of CP in the quark sector.

The CKM Matrix

$$\begin{pmatrix} 1 - 1/2\lambda^2 + \frac{1}{4}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^4\lambda^4 - A^2\lambda^5(\rho + i\eta) & 1 - \frac{1}{2}\lambda^2 + \frac{1}{4}\lambda^4(1 - 2A^2) & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 + A\lambda^4(\frac{1}{2} - \rho - i\eta) & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix}$$

s mixing

ril 2, 2008

(β_s) unitarity triangle

 β_s is the small angle occurring in squashed (sb) UT.

(β_s) unitarity triangle

- β_s is the small angle occuring in squashed (sb) UT.
- $\frac{V_{us}V_{ub}^*}{V_{cs}V_{-b}^*} + 1 + \frac{V_{ts}V_{tb}^*}{V_{cs}V_{-b}^*} = 0.$

(β_s) unitarity triangle

- β_s is the small angle occuring in squashed (sb) UT.
- $\frac{v_{us}v_{ub}^*}{v_{cs}v_{cb}^*} + 1 + \frac{v_{ts}v_{tb}^*}{v_{cs}v_{cb}^*} = 0.$
- $\beta_s \equiv arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$

(β_s) unitarity triangle

- β_s is the small angle occurring in squashed (sb) UT.
- $\beta_s \equiv arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) \approx \lambda^2 \eta$

(β_s) unitarity triangle

- β_s is the small angle occuring in squashed (sb) UT.
- $\frac{V_{us}V_{ub}^*}{V_{cs}V_{cs}^*} + 1 + \frac{V_{ts}V_{tb}^*}{V_{cs}V_{cs}^*} = 0.$
- $\beta_s \equiv arg\left(-\frac{V_{ts}V_{tb}^*}{V_{Cs}V_{-k}^*}\right) \approx \lambda^2 \eta$
- Hence in $SM \beta_s$ is doubly Cabibbo suppressed:

B_s mixing

(β_s) unitarity triangle

- $m{\beta}_s$ is the small angle occuring in squashed (sb) UT.
- $\beta_s \equiv arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{*}^*}\right) \approx \lambda^2 \eta$
- Hence in $SM \beta_s$ is doubly Cabibbo suppressed:
- $\mathcal{O}(0.02)$ radians or $\mathcal{O}(1^{\circ})$.

Neutral B_s system

Neutral B_s system

■ The time evolution of the B_s flavor eigenstates described by the Schodringer equation:

$$\mathcal{H}_{\text{eff}}^{\Delta B=2} \qquad = \left[\begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix} \right] \begin{pmatrix} |B_s^0\rangle \\ |\bar{B}_s^0\rangle \end{pmatrix},$$
 where,

$$\textit{M}_{12} \ = \langle \bar{\textit{B}}_{s}^{0} | \mathcal{H}_{\text{eff}}^{\Delta B=2} | \textit{B}_{s}^{0} \rangle = |\textit{M}_{12}| \, e^{i\theta_{M_{12}}}, \quad \Gamma_{12} = |\Gamma_{12}| \, e^{i\theta_{\Gamma_{12}}}$$

Neutral B_s system

■ The time evolution of the B_s flavor eigenstates described by the Schodringer equation:

$$\begin{array}{ll} \mathcal{H}_{\textit{eff}}^{\Delta B=2} & = \left[\begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{\imath}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}\right] \begin{pmatrix} |B_s^0\rangle \\ |\bar{B}_s^0\rangle \end{pmatrix}, \\ \text{where,} \\ M_{12} & = \langle \bar{B}_s^0 | \mathcal{H}_{\textit{eff}}^{\Delta B=2} |B_s^0\rangle = |M_{12}| \, e^{i\theta_{M_{12}}}, \quad \Gamma_{12} = |\Gamma_{12}| \, e^{i\theta_{\Gamma_{12}}} \\ \end{array}$$

 $|\mathcal{U}_{12}\rangle = |\mathcal{U}_{11}\rangle |\mathcal{U}_{11}\rangle = |\mathcal{U}_{11}\rangle |\mathcal{U}_{11}\rangle = |\mathcal{U}_{11}\rangle |\mathcal{U}_{11}\rangle |\mathcal{U}_{11}\rangle = |\mathcal{U}_{11}\rangle |\mathcal{U}_{1$

 \blacksquare Diagonalize the mass (M) and decay (Γ) matrices gives...

Neutral B_s system

■ The time evolution of the B_s flavor eigenstates described by the Schodringer equation:

$$\mathcal{H}_{\text{eff}}^{\Delta B=2} \qquad = \begin{bmatrix} \begin{pmatrix} \textit{M} & \textit{M}_{12} \\ \textit{M}_{12}^* & \textit{M} \end{pmatrix} - \frac{\textit{i}}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix} \end{bmatrix} \begin{pmatrix} |\textit{B}_s^0 \rangle \\ |\vec{\textit{B}}_s^0 \rangle \end{pmatrix},$$
 where,

 $M_{12} = \langle \bar{B}_{s}^{0} | \mathcal{H}_{cff}^{\Delta B=2} | B_{s}^{0} \rangle = |M_{12}| e^{i\theta_{M_{12}}}, \quad \Gamma_{12} = |\Gamma_{12}| e^{i\theta_{\Gamma_{12}}}$

.. the mass eigenstates:

$$|B_L^0
angle =
ho |B_q^0
angle + q|ar{B_q^0}
angle, |B_H^0
angle =
ho |B_q^0
angle - q|ar{B_q^0}
angle.$$

 $B_{\mathcal{S}}$ mixing

B_s mixing

Neutral B_s system

Flavor eigenstates differ from mass eigenstates & mass eigenvalues are different: $(\Delta m_s = M_H - M_L \approx 2 |M_{12}|)$.

B_s mixing

Neutral B_s system

- Flavor eigenstates differ from mass eigenstates & mass eigenvalues are different: $(\Delta m_s = M_H M_L \approx 2 | M_{12}|)$.
- B_s oscillate with a frequency $17.77\pm0.12ps^{-1}$. (CDF).

B_s mixing

Neutral B_s system

- Flavor eigenstates differ from mass eigenstates & mass eigenvalues are different: $(\Delta m_s = M_H M_L \approx 2 | M_{12}|)$.
- B_s oscillate with a frequency $17.77\pm0.12ps^{-1}$. (CDF).
- mass eigenstates have different decay widths: $\Delta \Gamma_s = \Gamma_L \Gamma_H \approx 2 |\Gamma_{12}| \cos(\phi_s)$

B_s mixing

Neutral B_s system

- Flavor eigenstates differ from mass eigenstates & mass eigenvalues are different: $(\Delta m_s = M_H M_L \approx 2 | M_{12}|)$.
- B_s oscillate with a frequency $17.77\pm0.12ps^{-1}$. (CDF).
- mass eigenstates have different decay widths: $\Delta\Gamma_s = \Gamma_I - \Gamma_H \approx 2 |\Gamma_{12}| \cos(\phi_s)$
- Here $\phi_s = arg \left(\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3}$.

Physics potential of the $B_s \to J/\psi \phi$ decay rates.

B_s mixing

Reduced angular decay rates.

 $m{\theta}_{tr}$ give considerable discriminating power bewteen $\mathcal{CP}\text{-even}$ and $m{-odd}$ states, and

$$\begin{aligned} \frac{d\Gamma\left[B_s^o(t) \to J/\psi\phi\right]}{d\cos\theta_{tr}} &\propto \\ \left(\left|A_{||}(t)\right|^2 + \left|A_o(t)\right|^2 \frac{1}{2}(1+\cos^2\theta_{tr}) + (\left|A_{\perp}(t)\right|^2)\sin^2\theta_{tr}\right) \end{aligned}$$

Physics potential of the $B_s \to J/\psi \phi$ decay rates.

B_s mixing

Reduced angular decay rates.

- = θ_{tr} give considerable discriminating power bewteen \mathcal{CP} -even and -odd states, and
- simplifies our expressions:

$$\frac{d\Gamma\left[B_s^o(t) \to J/\psi\phi\right]}{d\cos\theta_{tr}} \propto \\ \left(\left|A_{||}(t)\right|^2 + \left|A_o(t)\right|^2 \frac{1}{2}(1+\cos^2\theta_{tr}) + (\left|A_{\perp}(t)\right|^2)\sin^2\theta_{tr}\right)$$

Reduced angular decay rates

B_s mixing

unTagging

$$\begin{split} \frac{d\Gamma(t)}{d\cos\theta_{tr}} + \frac{d\bar{\Gamma}(t)}{d\cos\theta_{tr}} &\propto \\ &(1-R_{\perp})[(1+\cos(\phi_s))e^{-\Gamma_L t} + (1-\cos(\phi_s))e^{-\Gamma_H t} \\ &+ 2e^{-\bar{\Gamma_s}t}\sin(\Delta m_s t)\sin(\phi_s)]\frac{1}{2}(1+\cos^2\theta_{tr}) \\ &+ R_{\perp}[(1-\cos(\phi_s))e^{-\Gamma_L t} + (1+\cos(\phi_s))e^{-\Gamma_H t} \\ &- 2e^{-\bar{\Gamma_s}t}\sin(\Delta m_s t)\sin(\phi_s)]\sin^2\theta_{tr} \end{split}$$

Reduced angular decay rates

Tagging

■ Procedure by which we identify the *B* meson flavor at production.

Reduced angular decay rates

Tagging

- Procedure by which we identify the *B* meson flavor at production.
- Inputed from $B_s \to D_s \pi$ decays: $\epsilon_{tag} \sim 57\%$, $\omega_{tag} \sim 33\%$

$$\begin{split} &(1-\omega_{tag})\frac{d\Gamma(t)}{d\cos\theta_{tr}}+\omega_{tag}\frac{d\bar{\Gamma}(t)}{d\cos\theta_{tr}}\propto\\ &(1-R_{\perp})[(1+\cos(\phi_s))e^{-\Gamma_L t}+(1-\cos(\phi_s))e^{-\Gamma_H t}\\ &+ 2(\mathbf{1}-\mathbf{2}\omega_{\mathsf{tag}})e^{-\bar{\Gamma}_s t}\sin(\Delta m_s t)\sin(\phi_s)]\frac{1}{2}(1+\cos^2\theta_{tr})\\ &+ R_{\perp}[(1-\cos(\phi_s))e^{-\Gamma_L t}+(1+\cos(\phi_s))e^{-\Gamma_H t}\\ &- 2(\mathbf{1}-\mathbf{2}\omega_{\mathsf{tag}})e^{-\bar{\Gamma}_s t}\sin(\Delta m_s t)\sin(\phi_s)]\sin^2\theta_{tr} \end{split}$$

Physics potential of the $B_s \to J/\psi \phi$ decay rates.

B_s mixing

Tagged full angular decay rate

$$(1 - \omega_{tag}) \frac{d^{3}\Gamma(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} + \omega_{tag} \frac{d^{3}\bar{\Gamma}(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} \propto$$

$$\frac{9}{32\pi} \left[|A_{o}(t)|_{tag}^{2}\Theta^{1}(\theta_{tr},\theta_{\phi},\phi_{tr}) + |A_{||}(t)|_{tag}^{2}\Theta^{2}(\theta_{tr},\theta_{\phi},\phi_{tr}) + |A_{\perp}|_{tag}^{2}\Theta^{3}(\theta_{tr},\theta_{\phi},\phi_{tr}) + \Im(A_{||}^{*}(t)A_{\perp}(t))_{tag}\Theta^{4}(\theta_{tr},\theta_{\phi},\phi_{tr}) + \Re(A_{o}^{*}(t)A_{||}(t))_{tag}\Theta^{5}(\theta_{tr},\theta_{\phi},\phi_{tr}) + \Im(A_{o}^{*}(t)A_{\perp}(t))_{tag}\Theta^{6}(\theta_{tr},\theta_{\phi},\phi_{tr}) \right]$$

Physics potential of the $B_s \rightarrow J/\psi \phi$ decay rates.

The time dependent terms

$$(1 - \omega_{tag}) \frac{d^{3}\Gamma(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} + \omega_{tag} \frac{d^{3}\bar{\Gamma}(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} \propto$$

$$\frac{9}{32\pi} \left[|A_{o}(t)|_{tag}^{2} \Theta^{1}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) + |A_{||}(t)|_{tag}^{2} \Theta^{2}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) + |A_{\perp}|_{tag}^{2} \Theta^{3}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) + \frac{\Im(A_{||}^{*}(t)A_{\perp}(t))_{tag}}{\Im(A_{o}^{*}(t)A_{||}(t))_{tag}} \Theta^{4}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) + \frac{\Im(A_{o}^{*}(t)A_{||}(t))_{tag}}{\Im(A_{o}^{*}(t)A_{||}(t))_{tag}} \Theta^{5}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) + \frac{\Im(A_{o}^{*}(t)A_{\perp}(t))_{tag}}{\Im(A_{o}^{*}(t)A_{\perp}(t))_{tag}} \Theta^{6}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) \right]$$

Physics potential of the $B_s \to J/\psi \phi$ decay rates.

The time dependent terms

$$(1 - \omega_{tag}) \frac{d^3\Gamma(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} + \omega_{tag} \frac{d^3\overline{\Gamma}(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} \propto$$

$$\frac{9}{32\pi} \left[|A_{o}(t)|_{tag}^{2} \Theta^{1}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) + |A_{||}(t)|_{tag}^{2} \Theta^{2}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) \right. \\
+ |A_{\perp}|_{tag}^{2} \Theta^{3}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) + |\Im(A_{||}^{*}(t)A_{\perp}(t))_{tag} \Theta^{4}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) + \\
\Re(A_{o}^{*}(t)A_{||}(t))_{tag} \Theta^{5}(\theta_{tr}, \theta_{\phi}, \phi_{tr}) + |\Im(A_{o}^{*}(t)A_{\perp}(t))_{tag} \Theta^{6}(\theta_{tr}, \theta_{\phi}, \phi_{tr})|$$

■ Information to extract ϕ_s , $\Delta\Gamma_s$, Δm_s , ω_{tag} .

Physics potential of the $B_s \to J/\psi \phi$ decay rates.

The Angular dependent terms

$$(1 - \omega_{tag}) \frac{d^{3}\Gamma(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} + \omega_{tag} \frac{d^{3}\bar{\Gamma}(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} \propto$$

$$\frac{9}{32\pi} \left[|A_{o}(t)_{tag}|^{2} \frac{\Theta^{1}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{1}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + |A_{||}(t)_{tag}|^{2} \frac{\Theta^{2}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{2}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + |A_{||}(t)_{tag} \frac{\Theta^{3}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{3}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + \Re(A_{o}^{*}(t)A_{||}(t))_{tag} \frac{\Theta^{5}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{5}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + \Re(A_{o}^{*}(t)A_{||}(t))_{tag} \frac{\Theta^{6}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{5}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + \Re(A_{o}^{*}(t)A_{o}(t))_{tag} \frac{\Theta^{6}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{5}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + \Re(A_{o}^{*}($$

The Angular dependent terms

$$(1 - \omega_{tag}) \frac{d^{3}\Gamma(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} + \omega_{tag} \frac{d^{3}\bar{\Gamma}(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} \propto$$

$$\frac{9}{32\pi} \left[|A_{o}(t)_{tag}|^{2} \frac{\Theta^{1}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{1}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + |A_{||}(t)_{tag}|^{2} \frac{\Theta^{2}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{2}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + |A_{||}(t)|_{tag}^{2} \frac{\Theta^{2}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{3}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + \Re(A_{||}^{*}(t)A_{\perp}(t))_{tag} \frac{\Theta^{4}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{5}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + \Re(A_{o}^{*}(t)A_{\perp}(t))_{tag} \frac{\Theta^{6}(\theta_{tr},\theta_{\phi},\phi_{tr})}{|\Phi^{5}(\theta_{tr},\theta_{\phi},\phi_{tr})|} + \Re(A_{o}^{*}(t)A_{\perp$$

■ Information to distinguish \mathcal{CP} -even and -odd states.

B_s mixing

Time dependent real terms

$$\frac{\overline{|A_{\perp}(t)_{tag}|^2}}{|A_{\perp}(t)_{tag}|^2} = \frac{|A_{\perp}(0)_{tag}|^2}{2} \left[(1 - \cos\phi_s) e^{-\Gamma_L t} + (1 + \cos\phi_s) e^{-\Gamma_H t} - 2(\mathbf{1} - \mathbf{2}\omega_{tag}) e^{-\overline{\Gamma}_s t} \sin(\Delta m_s t) \sin\phi_s \right]$$

Time dependent real terms

 \mathcal{CP} -even

B_s mixing

$$\begin{split} \widehat{|A_{0,\parallel}(t)_{tag}|^2} &= \frac{|A_{0,\parallel}(0)_{tag}|^2}{2} \left[(1+\cos\phi_s) \, e^{-\Gamma_L t} + \underline{(1-\cos\phi_s)} \, e^{-\Gamma_H t} \right. \\ &\quad + 2(\mathbf{1}-\mathbf{2}\omega_{\mathsf{tag}}) e^{-\overline{\Gamma}_s t} \sin(\Delta m_s t) \sin\phi_s \right] \\ \widehat{|A_{\perp}(t)_{tag}|^2} &= \frac{|A_{\perp}(0)_{tag}|^2}{2} \left[\underline{(1-\cos\phi_s)} \, e^{-\overline{\Gamma}_L t} + (1+\cos\phi_s) \, e^{-\Gamma_H t} \right. \\ &\quad - 2(\mathbf{1}-\mathbf{2}\omega_{\mathsf{tag}}) e^{-\overline{\Gamma}_s t} \sin(\Delta m_s t) \sin\phi_s \right] \end{split}$$

If ϕ_s SM like, sensitivity to lifetimes, need interference terms.

B_s mixing

Time dependent imaginary interference terms

$$\begin{split} &\operatorname{Im}\{A_{\parallel}^{*}(t)A_{\perp}(t)\}_{tag} = |A_{\parallel}(0)||A_{\perp}(0)|_{tag} \Big[\\ &(\mathbf{1} - \mathbf{2}\omega_{\mathsf{tag}})e^{-\Gamma_{s}t}\sin\delta_{1}\cos(\Delta m_{s}t) - \cos\delta_{1}\sin(\Delta m_{s}t)\cos\phi_{s} \\ &-\frac{1}{2}\left(e^{-\Gamma_{\mathrm{H}}t} - e^{-\Gamma_{\mathrm{L}}t}\right)\cos\delta_{1}\sin\phi_{s} \Big] \\ &\operatorname{Im}\{A_{0}^{*}(t)A_{\perp}(t)\}_{tag} = |A_{0}(0)||A_{\perp}(0)|_{tag} \Big[\\ &(\mathbf{1} - \mathbf{2}\omega_{\mathsf{tag}})e^{-\Gamma_{s}t}\sin\delta_{2}\cos(\Delta m_{s}t) - \cos\delta_{2}\sin(\Delta m_{s}t)\cos\phi_{s} \\ &-\frac{1}{2}\left(e^{-\Gamma_{\mathrm{H}}t} - e^{-\Gamma_{\mathrm{L}}t}\right)\cos\delta_{2}\sin\phi_{s} \Big] \end{split}$$

Time dependent imaginary interference terms

$$\begin{split} &\operatorname{Im}\{A_{\parallel}^{*}(t)A_{\perp}(t)\}_{tag} = |A_{\parallel}(0)||A_{\perp}(0)|_{tag} \Big[\\ &(\mathbf{1} - \mathbf{2}\omega_{\mathsf{tag}})e^{-\Gamma_{s}t}\sin\delta_{1}\cos(\Delta m_{s}t) - \cos\delta_{1}\sin(\Delta m_{s}t)\cos\phi_{s} \\ &-\frac{1}{2}\left(e^{-\Gamma_{\mathsf{H}}t} - e^{-\Gamma_{\mathsf{L}}t}\right)\cos\delta_{1}\sin\phi_{s} \Big] \\ &\operatorname{Im}\{A_{0}^{*}(t)A_{\perp}(t)\}_{tag} = |A_{0}(0)||A_{\perp}(0)|_{tag} \Big[\\ &(\mathbf{1} - \mathbf{2}\omega_{\mathsf{tag}})e^{-\Gamma_{s}t}\sin\delta_{2}\cos(\Delta m_{s}t) - \cos\delta_{2}\sin(\Delta m_{s}t)\cos\phi_{s} \\ &-\frac{1}{2}\left(e^{-\Gamma_{\mathsf{H}}t} - e^{-\Gamma_{\mathsf{L}}t}\right)\cos\delta_{2}\sin\phi_{s} \Big] \end{split}$$

Time dependent imaginary interference terms

$$\begin{split} &\operatorname{Im}\{A_{\parallel}^{*}(t)A_{\perp}(t)\}_{tag} = |A_{\parallel}(0)||A_{\perp}(0)|_{tag} \Big[\\ &(\mathbf{1} - \mathbf{2}\omega_{\mathsf{tag}})e^{-\Gamma_{s}t}\sin\delta_{1}\cos(\Delta m_{s}t) - \cos\delta_{1}\sin(\Delta m_{s}t)\cos\phi_{s} \\ &-\frac{1}{2}\left(e^{-\Gamma_{\mathrm{H}}t} - e^{-\Gamma_{\mathrm{L}}t}\right)\cos\delta_{1}\sin\phi_{s} \Big] \\ &\operatorname{Im}\{A_{0}^{*}(t)A_{\perp}(t)\}_{tag} = |A_{0}(0)||A_{\perp}(0)|_{tag} \Big[\\ &(\mathbf{1} - \mathbf{2}\omega_{\mathsf{tag}})e^{-\Gamma_{s}t}\sin\delta_{2}\cos(\Delta m_{s}t) - \cos\delta_{2}\sin(\Delta m_{s}t)\cos\phi_{s} \\ &-\frac{1}{2}\left(e^{-\Gamma_{\mathrm{H}}t} - e^{-\Gamma_{\mathrm{L}}t}\right)\cos\delta_{2}\sin\phi_{s} \Big] \end{split}$$

delta's separated from ϕ_s , possible to fit for ϕ_s and the delta's.

Time dependent imaginary interference terms

$$\begin{split} &\operatorname{Im}\{A_{\parallel}^{*}(t)A_{\perp}(t)\}_{tag} = |A_{\parallel}(0)||A_{\perp}(0)|_{tag} \Big[\\ &(\mathbf{1} - \mathbf{2}\omega_{\mathsf{tag}})e^{-\Gamma_{s}t}\sin\delta_{1}\cos(\Delta m_{s}t) - \cos\delta_{1}\sin(\Delta m_{s}t)\cos\phi_{s} \\ &-\frac{1}{2}\left(e^{-\Gamma_{\mathrm{H}}t} - e^{-\Gamma_{\mathrm{L}}t}\right)\cos\delta_{1}\sin\phi_{s} \Big] \\ &\operatorname{Im}\{A_{0}^{*}(t)A_{\perp}(t)\}_{tag} = |A_{0}(0)||A_{\perp}(0)|_{tag} \Big[\\ &(\mathbf{1} - \mathbf{2}\omega_{\mathsf{tag}})e^{-\Gamma_{s}t}\sin\delta_{2}\cos(\Delta m_{s}t) - \cos\delta_{2}\sin(\Delta m_{s}t)\cos\phi_{s} \\ &-\frac{1}{2}\left(e^{-\Gamma_{\mathrm{H}}t} - e^{-\Gamma_{\mathrm{L}}t}\right)\cos\delta_{2}\sin\phi_{s} \Big] \end{split}$$

- delta's separated from ϕ_s , possible to fit for ϕ_s and the delta's.
- Interference terms give sensitivity to ϕ_s if SM value and additional terms if $\phi_s \neq SM$ value.

Simultaneous Fits including: $\delta_{1,2}$, ϕ_s and ω_{tag}

Simultaneous Fits including: $\delta_{1,2}$, ϕ_s and ω_{tag}

■ Why should it be possible to fit for $\delta_{1,2}$, ϕ_s and ω_{tag} using full tagged decay rates.

 B_s mixing

Simultaneous Fits including: $\delta_{1,2}$, ϕ_s and ω_{tag}

- Why should it be possible to fit for $\delta_{1,2}$, ϕ_s and ω_{tag} using full tagged decay rates.
- If ϕ_s close to *SM* value: *Im* terms can be recast too: $(1 2\omega_{tag}) \times \sin(\delta \Delta m_s t)$.

 B_s mixing

Simultaneous Fits including: $\delta_{1,2}$, ϕ_s and ω_{tag}

- Why should it be possible to fit for $\delta_{1,2}$, ϕ_s and ω_{tag} using full tagged decay rates.
- If ϕ_s close to *SM* value: *Im* terms can be recast too: $(1 2\omega_{tag}) \times \sin(\delta \Delta m_s t)$.
- Simultaneous fit now possible since fit can separately determine: the period (Δm_s), off-set (δ) and amplitude (1-2 ω_{tag}).

Simultaneous Fits including: $\delta_{1,2}$, ϕ_s and ω_{tag}

- Why should it be possible to fit for $\delta_{1,2}$, ϕ_s and ω_{tag} using full tagged decay rates.
- If ϕ_s close to *SM* value: *Im* terms can be recast too: $(1 2\omega_{tag}) \times \sin(\delta \Delta m_s t)$.
- Simultaneous fit now possible since fit can separately determine: the period (Δm_s), off-set (δ) and amplitude (1-2 ω_{tag}).
- Similar (but more complated) argument holds if $\phi_s \neq SM$ value: Im terms now recast too:

B_s mixing

Simultaneous Fits including: $\delta_{1,2}$, ϕ_s and ω_{tag}

- Why should it be possible to fit for $\delta_{1,2}$, ϕ_s and ω_{tag} using full tagged decay rates.
- If ϕ_s close to *SM* value: *Im* terms can be recast too: $(1 2\omega_{tag}) \times \sin(\delta \Delta m_s t)$.
- Simultaneous fit now possible since fit can separately determine: the period (Δm_s), off-set (δ) and amplitude (1-2 ω_{tag}).
- Similar (but more complated) argument holds if $\phi_s \neq SM$ value: Im terms now recast too:
 - $\begin{array}{c} & \frac{(1-2\omega_{lag})}{2} \times \\ & (1+\cos\phi_s)\sin(\delta-\Delta m_s t) + (1-\cos\phi_s)\sin(\delta+\Delta m_s t). \end{array}$

Pull distibutions of phis

Figure: Including Detector effects

Pull distibutions of phis

B_s mixing

Figure: Not Including Detector effects

pril 2, 2008

Variation studies of ϕ_s sensitivity to ϕ_s

Figure: The effect on ϕ_s sensitivity $\sigma(\phi_s)$ when the central value of ϕ_s is changed. Left: using reduce and Right: using full angular decay rates.