
Illuminating new physics
with afs at LHCb
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LHCb

LHCb is precision experiment targeting b-physics
2 fb-1 per nominal year : 1012 bb-events2 fb per nominal year : 10 bb events
b-hadrons produced at small angles ∴ forward-arm spectrometer
Focus: rare decays and CP-violation parameters

R Lambert UoE IOP, 2nd April 2008 2



Flavour-specific asym.

Flavour-specific decays
Favoured/Allowed fBq ⎯→⎯0Favoured/Allowed
Not allowed at tree
Through mixing
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Flavour specific asymmetry, afs, parameterises CPV in mixing [1]
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Discovery Potential

afs is sensitive to new physics (NP): [1]
Very small in the standard modelVery small in the standard model
Sensitive to loop contributions
Sensitive to new CPV phases
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Up to 200-times the SM prediction, O(10-3) [2]
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Current world best: DØ – direct measurement [3]

LHCb can measure down to 0 22% (stat) in 2fb-1 [4]
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LHCb can measure down to 0.22% (stat) in 2fb [4]
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Analysis Method

Untagged, time-dependent measurement
High statistics, ~1M selected events in 2fb-1High statistics, 1M selected events in 2fb
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Analysis Method

Untagged, time-dependent measurement
High statistics, ~1M selected events in 2fb-1High statistics, 1M selected events in 2fb
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Detector Asymmetry, δc

Matter detector → hadronic interactions are asymmetric 

Magnet divides +/- charge, allowing +/- asymmetry

Charge distribution from MC
120

Kaon interaction cross-section [5]
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Production Asymmetry, δp

LHC is a proton-proton collider: not CP-symmetric [6,7]
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Complications
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Polluting asymmetries are much larger than afs
Detector asymmetry δc ~(10-2)
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Handling systematics
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Measure remaining asymmetry:
Measure δc using partial reconstruction in control channels
Measure δb in sidebands

Error/uncertainty in measurement will produce residual asymmetry

Try to eliminate the contribution entirely
Subtraction between channels
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Subtraction method

Examine decays in different channels to the same final state:

νμ +−→ ss DB0

−−+− → πKKDs

νμ +−→ DBd
0
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Conclusions

afs is a sensitive probe of new physics

Precision measurement of afs can constrain many NP models

LHCb measurement polluted by other asymmetries
Magnet needs to be reversedMagnet needs to be reversed
All asymmetries will be measured in data
Subtraction method promises to eliminate many terms

LHCb can measure afs to 0.22 % (stat) with 2 fb-1 of data
Possible world-leading measurement with 1 nominal year of data
Constraining or measuring the NP regimeg g g
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Backup

Additional slides hereafter
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Tagged vs. Untagged

Decay rates

( )fBq
RS →Γ=Γ 0 ( )fBq

RS
→Γ=Γ
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( )fBWS →Γ=Γ 0 ( )fB
WS

ΓΓ
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No direct CP-violation
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RSRS Γ=Γ
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Tagged vs. Untagged

Tagged
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afs and NP

Constrains NP even if
No new flavour structure CurrentNo new flavour structure
Unitary CKM matrix
Tree-level SM dominated
No new direct/interference CPV

Current 
Constraints
On rs

2 and 
2θs. SM 
in redNo new direct/interference CPV
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Dimuon Measurements

Babar, Belle, Cleo and D0 all use the di-muon sample
Removes dependence on flavour taggingRemoves dependence on flavour tagging
Assume no production asymmetry, correct detector asymmetry
Predict branching fraction [fs/d & Zs/d] in SM
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Hadronic Channels

Semileptonic
Recent result from D0

ν−+lDq
0
qB

Recent result from D0

( ) 20 10))(17.0)(97.023.1( −×±±= syststatA Ds
SL

Statistically limited
LHCb will vastly improve on this

−+D0BHadronic
LHCb will be the first to measure this

reduces detector asymmetry

−+πqD0
qB

+−++→ πKKDqq
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Sensitivity to afs

DC04 – based study on Afs completed
Joint Bristol-Edinburgh LHCb noteJoint Bristol Edinburgh LHCb note

A iAssuming:
No Background asymmetry
Well known Detector asymmetry OR Production asymmetry
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What Asymmetry?

conservation principles: B le lμ lτ

Three main phenomena [2,3,4]

A Valence-Quark ScatteringA Valence-Quark Scattering
Enhances production of high energy species containing beam 
constituents

u B+

Enhances production of high energy species containing beam 
constituents

u B+u B+

u

u

u

b

b
g g
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g g

Example production of high-energy B+-meson by scattering of a u-type valence quark 
in the initial proton 

b

Example production of high-energy B+-meson by scattering of a u-type valence quark 
in the initial proton 

bb
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What Asymmetry?

conservation principles: B le lμ lτ

Three main phenomena [2,3,4]

B Beam DragB Beam Drag
Redistributes particle-antiparticle content as a function of 
transverse momentum (pt) and rapidity (direction)

Color connections

Redistributes particle-antiparticle content as a function of 
transverse momentum (pt) and rapidity (direction)

Color connectionsColor connectionsColor connections
with quark remnants
‘drag’ antiquarks 
toward the beam

Color connections
with quark remnants
‘drag’ antiquarks 
toward the beam

Color connections
with quark remnants
‘drag’ antiquarks 
toward the beam

Color connections
with di-quark remnants 
‘drag’ quarks 
toward the beam

Color connections
with di-quark remnants 
‘drag’ quarks 
toward the beam

Color connections
with di-quark remnants 
‘drag’ quarks 
toward the beam
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What Asymmetry?

conservation principles: B le lμ lτ

C Cluster Collapse

Three main phenomena [2,3,4]

p
Enhances the production of species containing beam remnants at 
low transverse momentum (pt)
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Production Asymmetry

Tuned Pythia samples

δp x1000 Min Bias (10M)* bb – inclusive (10M)* (20M) †

Pions -(4.23±0.16) -(2.16±0.09) -(2.27±0.07)

00
ds BB

Kaons -(17.0±0.5) -(7.73±0.26) -(8.2±0.2)

Muons -- +(2.0±1.2) +(1.0±0.9)
D (1 6 1 1) (1 6 1 1)Ds -- -(1.6±1.1) -(1.6±1.1)
Bs -- -(1.9±1.3) -(1.5±0.8)
Bd -- -(3.2±0.7) -(3.2±0.4)

*=standard decays, †=Stable Bd+Bs

Asymmetries agree with generic bb events
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Rapidity Distribution

[2,3,4] Predicted that δp is a fn of Pseudo-Rapidity
Low opening angle=high asymmetryLow opening angle high asymmetry

LHCb Looks at high rapidity ranges
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Pseudo Rapidity, ηPseudo Rapidity, η Tuned Pythia



Detector Asymmetry

Interactions asymmetric, tracking symmetric

Interactions TrackingInteractions Tracking
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