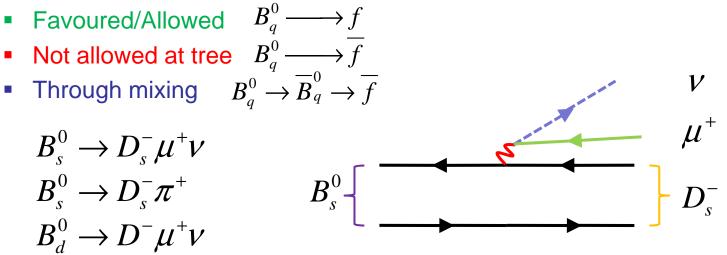

Illuminating new physics with a_{fs} at LHCb

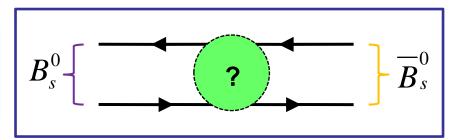

- LHCb is precision experiment targeting *b*-physics
 - 2 fb⁻¹ per nominal year : 10¹² bb-events
 - b-hadrons produced at small angles ... forward-arm spectrometer
 - Focus: rare decays and CP-violation parameters

Flavour-specific decays

➢ Flavour specific asymmetry, a_{fs}, parameterises CPV in mixing [1]

$$a_{fs}^{q} \propto A_{fs}^{q}(t) = \frac{\Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to \overline{f}\right) - \Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to f\right)}{\Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to \overline{f}\right) + \Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to f\right)}$$

R Lambert UoE



Discovery Potential

- ➤ a_{fs} is sensitive to new physics (NP): [1]
 - Very small in the standard model
 - Sensitive to loop contributions
 - Sensitive to new CPV phases

 $(a_{fs}^d)^{SM} = -(5.0 \pm 1.1) \times 10^{-4}$ $(a_{fs}^s)^{SM} = (2.1 \pm 0.4) \times 10^{-5}$

- > Up to 200-times the SM prediction, $O(10^{-3})$ [2]
- ➤ Current world best: DØ direct measurement [3] $A_{fs}^{s} = (2.45 \pm 1.93(st) \pm 0.35(sy)) \times 10^{-2}$
- LHCb can measure down to 0.22% (stat) in 2fb⁻¹ [4]

Analysis Method

- Untagged, time-dependent measurement
 - High statistics, ~1M selected events in 2fb⁻¹

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \left(\frac{a_{fs}^{q}}{2}\right) \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)}$$

- Untagged, time-dependent measurement
 - High statistics, ~1M selected events in 2fb⁻¹

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \frac{\delta_{c}^{q}}{2} - \left(\frac{a_{fs}^{q}}{2} + \frac{\delta_{p}^{q}}{2}\right) \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)} + \frac{\delta_{b}^{q}}{2} \left(\frac{B}{S}\right)^{q}$$

Extra constant and time-dependent terms

Analysis Method

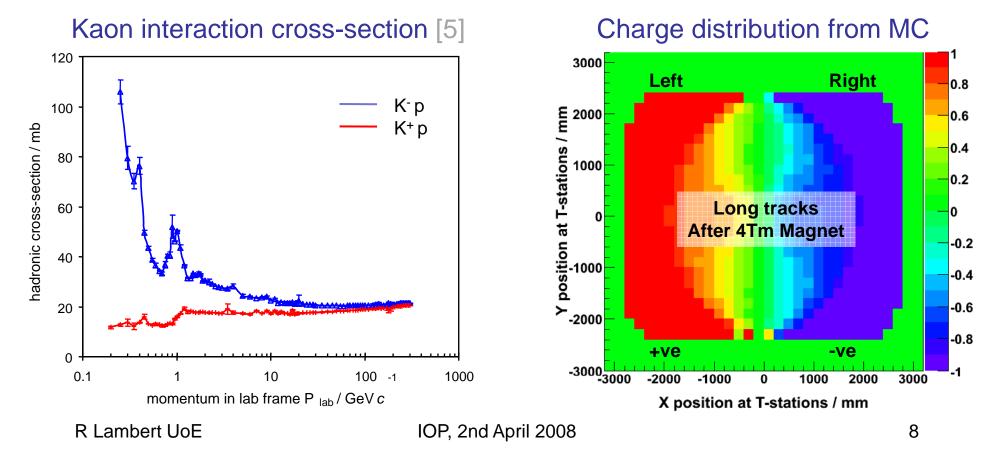
- Untagged, time-dependent measurement
 - High statistics, ~1M selected events in 2fb⁻¹

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \frac{\delta_{c}^{q}}{2} - \left(\frac{a_{fs}^{q}}{2} + \frac{\delta_{p}^{q}}{2}\right) \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)} + \frac{\delta_{b}^{q}}{2} \left(\frac{B}{S}\right)^{q}$$

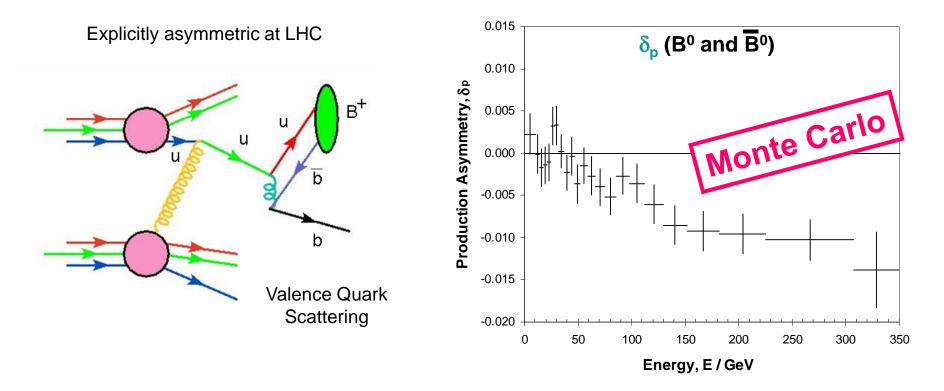
Extra constant and time-dependent terms

- Detector asymmetry δ_c
- Production asymmetry δ_{p}
- Background asymmetry δ_b

$$\delta_c = \frac{\mathcal{E}(\bar{f}_i)}{\mathcal{E}(f_i)} - 1$$

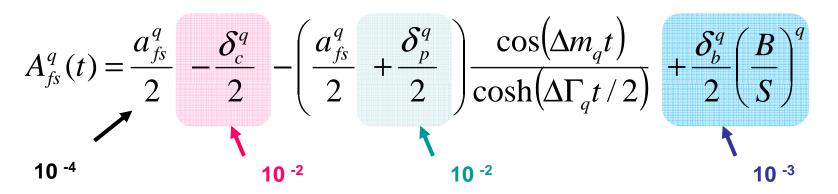

$$\delta_p = \frac{N(\overline{B}_q^0)}{N(\overline{B}_q^0)} - 1$$

$$\delta_b = \frac{\overline{B}/\overline{S}}{B/S} - 1$$

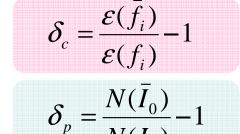


- \succ Matter detector \rightarrow hadronic interactions are asymmetric
- Magnet divides +/- charge, allowing +/- asymmetry

LHC is a proton-proton collider: not CP-symmetric [6,7]



LHCb is at high rapidity where production asymmetries are largest


Complications

Polluting asymmetries are much larger than a_{fs}

- Detector asymmetry δ_{c} ~(10⁻²)
- Production asymmetry $\delta_p \sim (10^{-2})$
- Background asymmetry $\delta_b \sim (10^{-3})$
- Should be reduced as much as possible
 - δ_c Reverse magnet
 - δ_p Separate out using time dependence
 - δ_b Eliminate specific backgrounds

$$\delta_b = \frac{\overline{B}/\overline{S}}{B/S} - 1$$

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \frac{\delta_{c}^{q}}{2} - \left(\frac{a_{fs}^{q}}{2} + \frac{\delta_{p}^{q}}{2}\right) \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)} + \frac{\delta_{b}^{q}}{2} \left(\frac{B}{S}\right)^{q}$$

- > Measure remaining asymmetry:
 - Measure δ_c using partial reconstruction in control channels
 - Measure δ_b in sidebands
- Error/uncertainty in measurement will produce residual asymmetry
- > Try to eliminate the contribution entirely
 - Subtraction between channels

$$\Delta A_{fs}^{s,d} = A_{fs}^s - A_{fs}^d$$

R Lambert UoE

> Examine decays in different channels to the same final state:

$$B_{s}^{0} \rightarrow D_{s}^{-}\mu^{+}\nu \qquad \qquad B_{d}^{0} \rightarrow D^{-}\mu^{+}\nu \\ D_{s}^{-} \rightarrow K^{+}K^{-}\pi^{-} \qquad \qquad D^{-} \rightarrow K^{+}K^{-}\pi^{-} \\ A_{fs}^{s} \approx \frac{a_{fs}^{s}}{2} - \frac{\delta_{c}^{s}}{2} \qquad \qquad A_{fs}^{d} \approx \frac{a_{fs}^{d}}{2} - \frac{\delta_{c}^{d}}{2}$$

- > The detector asymmetries should be equal
 - subtraction will remove detector asymmetry

$$\Delta A_{fs}^{s,d} = A_{fs}^s - A_{fs}^d \approx \frac{a_{fs}^s}{2} - \frac{a_{fs}^d}{2}$$

Can use precise B-factory results for a_{fs}^d to determine a_{fs}^s

R Lambert UoE

Conclusions

- \succ a_{fs} is a sensitive probe of new physics
- > Precision measurement of a_{fs} can constrain many NP models
- LHCb measurement polluted by other asymmetries
 - Magnet needs to be reversed
 - All asymmetries will be measured in data
 - Subtraction method promises to eliminate many terms
- > LHCb can measure a_{fs} to 0.22 % (stat) with 2 fb⁻¹ of data
 - Possible world-leading measurement with 1 nominal year of data
 - Constraining or measuring the NP regime

References

- 1. Nierste, hep-ph/0406300, 2006
- 2. Georgi, hep-ph/0703260
- 3. V. M. Abazov et al., D0, PRL 98 (2007) pp. 151801
- 4. N. Brook et al., LHCb-note CERN-LHCb-2007-054
- 5. Y.-M. Yao *et al.*, the Particle Data Group, Review 2006, <u>http://pdg.lbl.gov/</u>
- 6. M. Botlo et. al, SLAC-PUB-5795 SSCL-538 (1992) pp. 1-56
- 7. E. Norrbin and T. Sjostrand, Eur. Phys. J. C. 17 (2000) pp. 137-161

Additional slides hereafter

Decay rates

$$\Gamma^{RS} = \Gamma \left(B_q^0 \to f \right)$$
$$\Gamma^{WS} = \Gamma \left(B_q^0 \to \overline{f} \right)$$

$$\overline{\Gamma}^{RS} = \Gamma \left(\overline{B}_q^0 \to \overline{f} \right)$$
$$\overline{\Gamma}^{WS} = \Gamma \left(\overline{B}_q^0 \to \overline{f} \right)$$

No direct CP-violation

$$\Gamma^{RS} = \overline{\Gamma}^{RS}$$

➤ Tagged

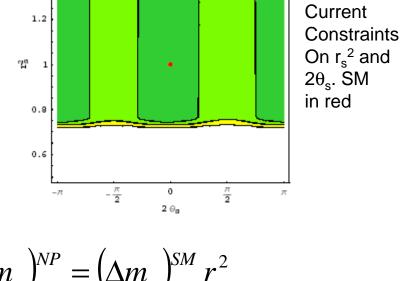
$$A_{fs}^{q} = \frac{\Gamma(B_{q}^{0} \to \overline{f}) - \Gamma(\overline{B}_{q}^{0} \to f)}{\Gamma(B_{q}^{0} \to \overline{f}) + \Gamma(\overline{B}_{q}^{0} \to f)} = \frac{\Gamma^{WS} - \overline{\Gamma}^{WS}}{\Gamma^{WS} + \overline{\Gamma}^{WS}}$$

> Untagged

$$A_{fs}^{q} = \frac{\Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to \overline{f}\right) - \Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to f\right)}{\Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to \overline{f}\right) + \Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to f\right)}$$

$$= \frac{\Gamma^{WS} + \overline{\Gamma}^{RS} - \Gamma^{RS} - \overline{\Gamma}^{WS}}{\Gamma^{WS} + \overline{\Gamma}^{RS} + \overline{\Gamma}^{RS} + \overline{\Gamma}^{WS}} \propto \Gamma^{WS} - \overline{\Gamma}^{WS}$$

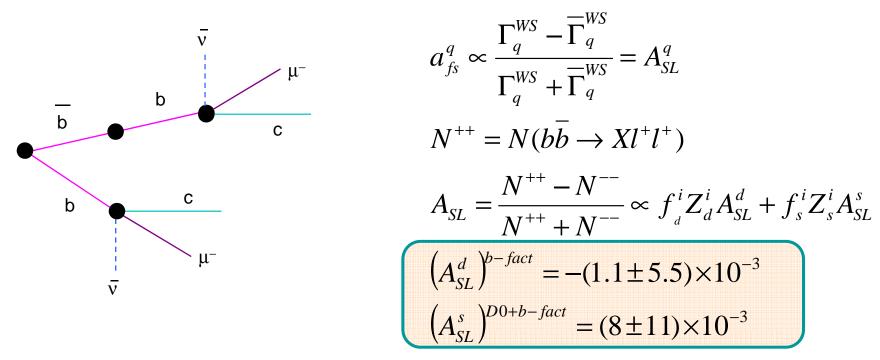
R Lambert UoE


$a_{\rm fs}$ and NP

1.4

- Constrains NP even if
 - No new flavour structure
 - Unitary CKM matrix
 - Tree-level SM dominated
 - No new direct/interference CPV
- No New Direct CPV

 $\left(\Gamma_{12}^{q}\right)^{NP} = \left(\Gamma_{12}^{q}\right)^{SM}$ $\left(M_{12}^{q}\right)^{NP} = r_{q}^{2}e^{2i\theta_{q}}\left(M_{12}^{q}\right)^{SM}$


 $(\Delta m_q)^{NP} = (\Delta m_q)^{SM} r_q^2$ $(a_{fs}^q)^{NP} = -\operatorname{Re}\left\{\frac{\Gamma_{12}^q}{M_{12}^q}\right\}^{SM} \frac{\sin(2\theta_q)}{r_q^2}$

R Lambert UoE

- ➢ Babar, Belle, Cleo and D0 all use the di-muon sample
 - Removes dependence on flavour tagging
 - Assume no production asymmetry, correct detector asymmetry
 - Predict branching fraction [f_{s/d} & Z_{s/d}] in SM

Hadronic Channels

> Semileptonic
$$\overline{B}_q^0 \longrightarrow D_q^+ l^- \overline{V}$$

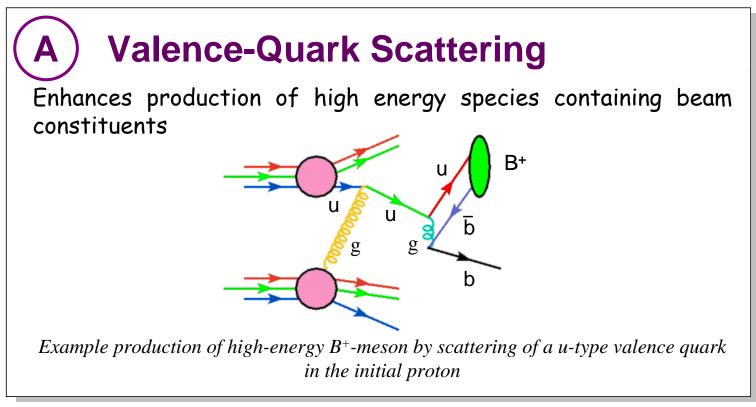
Recent result from D0

$$(A_{SL}^{s})^{D0} = (1.23 \pm 0.97(stat) \pm 0.17(syst)) \times 10^{-2}$$

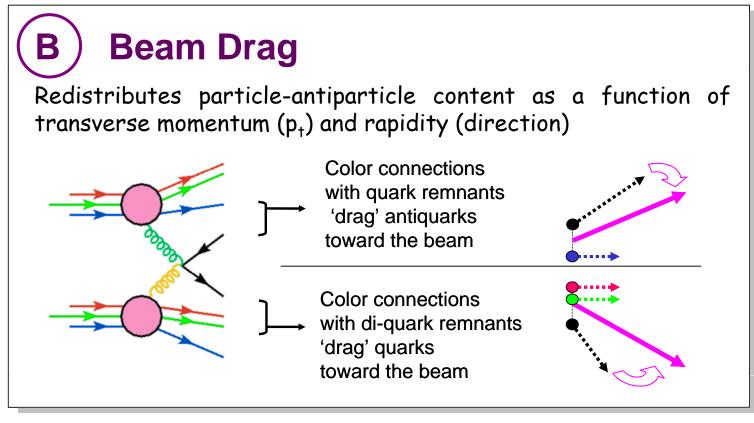
- Statistically limited
- LHCb will vastly improve on this
- \succ Hadronic $\overline{B}_q^0 \longrightarrow D_q^+ \pi^-$
 - LHCb will be the first to measure this
 - $D_q^+ \rightarrow K^+ K^- \pi^+$ reduces detector asymmetry

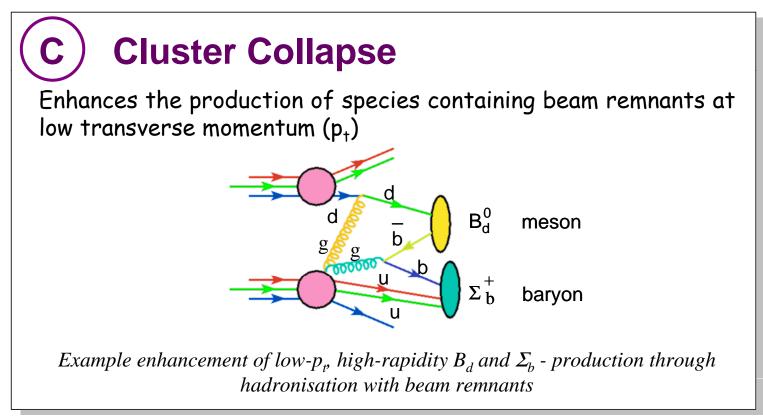
Sensitivity to a_{fs}

- DC04 based study on A_{fs} completed
 - Joint Bristol-Edinburgh LHCb note


Scenario $\mathbf{B}^0_s \to \dots$	Resolution/ps	$\sigma_{a_{fs}}/1{\rm M}$	$\sigma_{a_{fs}}/2{\rm fb}^{-1}$	$\sigma_{A_p}/1{\rm M}$	$\sigma_{A_p}/2{\rm fb}^{-1}$
$D_s^- \mu^+ \nu_\mu \; (< 4.5 {\rm GeV})$	0.270	0.20%	0.22%	None	None
$D_s^- \mu^+ \nu_\mu \ (> 4.5 \text{GeV})$	0.120	0.20%	0.47%	1.29%	3.01%
$D_s \pi$	0.030	0.20%	0.54%	0.19%	0.51%

- > Assuming:
 - No Background asymmetry
 - Well known Detector asymmetry OR Production asymmetry

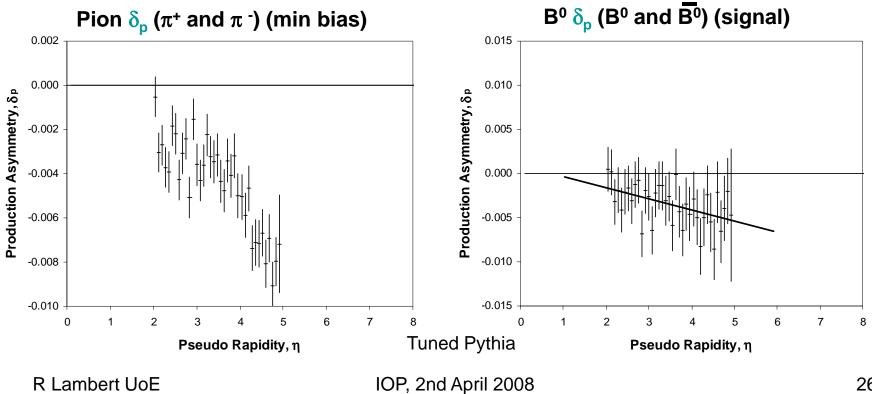

- > conservation principles: $B I_e I_\mu I_\tau$
- ➤ Three main phenomena [2,3,4]


- > conservation principles: $B I_e I_\mu I_\tau$
- ➤ Three main phenomena [2,3,4]

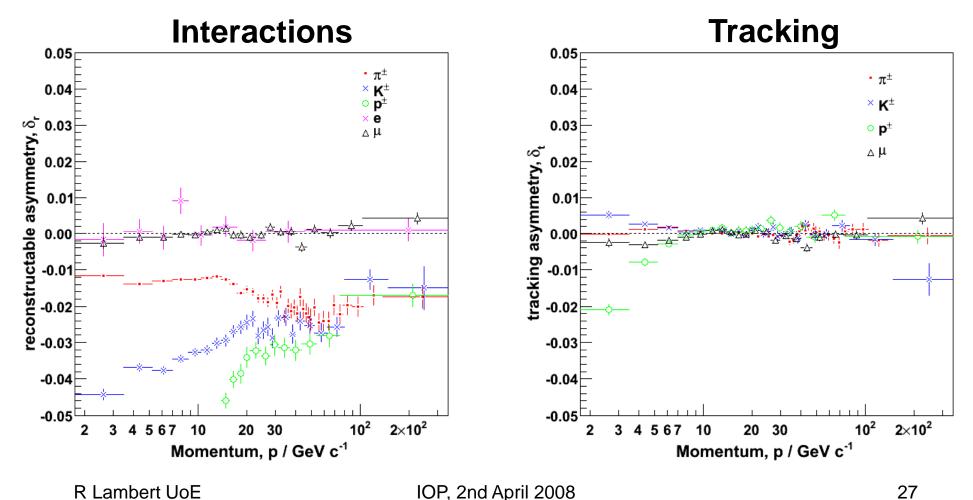
- > conservation principles: $B I_e I_\mu I_\tau$
- ➤ Three main phenomena [2,3,4]

Tuned Pythia samples

δ _p x1000	Min Bias (10M)*	bb - inclusive (10M)*	$B^0_s B^0_d$ (20M) †
Pions	-(4.23±0.16)	-(2.16±0.09)	-(2.27±0.07)
Kaons	-(17.0±0.5)	-(7.73±0.26)	-(8.2±0.2)
Muons		+(2.0±1.2)	+(1.0±0.9)
Ds		-(1.6±1.1)	-(1.6±1.1)
Bs		-(1.9±1.3)	-(1.5±0.8)
Bd		-(3.2±0.7)	-(3.2±0.4)


*=standard decays, †=Stable Bd+Bs

> Asymmetries agree with generic bb events


- \geq [2,3,4] Predicted that δ_{p} is a fn of Pseudo-Rapidity
 - Low opening angle=high asymmetry
- LHCb Looks at high rapidity ranges \succ

Interactions asymmetric, tracking symmetric

