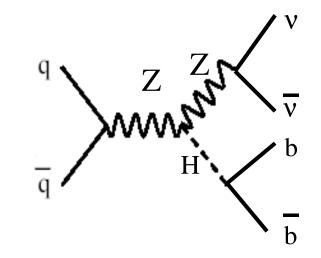
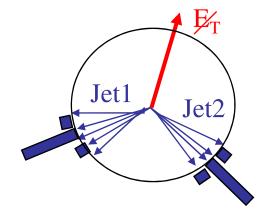


Search for Associated Production of Z and Higgs Bosons in vvbb Final States at DØ

- 1. Introduction
- 2. Analysis Outline
- 3. QCD Background Subtraction
- 4. Neural Net b-tagging
- 5. Neural Net Event Classification
- 6. Results and Systematic Errors
- 7. Limits
- 8. Summary

Theo Christoudias





Motivation

2 b-jets + missing E_T topology very sensitive: $\sigma(qq \rightarrow ZH) \times Br(Z \rightarrow vv, H \rightarrow bb) \sim 0.015pb$ (m_H=115GeV) Also sensitive to $\sigma(qq \rightarrow WH) \times Br(W \rightarrow Iv, H \rightarrow bb)$

Characteristic Signal

- Large missing E_T (calorimetry)
- 2 b-tagged jets with high p_T (tracking, b-tagging)
- Jets boosted (not back to back)
- Dijet mass of b-jets
- No isolated leptons

0.3 fb⁻¹result in PRL

1 fb⁻¹ cuts-based result April 2007

neural net result November 2007

2 fb⁻¹ preliminary result in February 2008

IoP Lancaster 2008

The signal is well defined but has significant background

Simulated SM background

Dominated by W+jets, Z+jets, top, and di-boson Well defined: can be modeled but some irreducible

Instrumental background

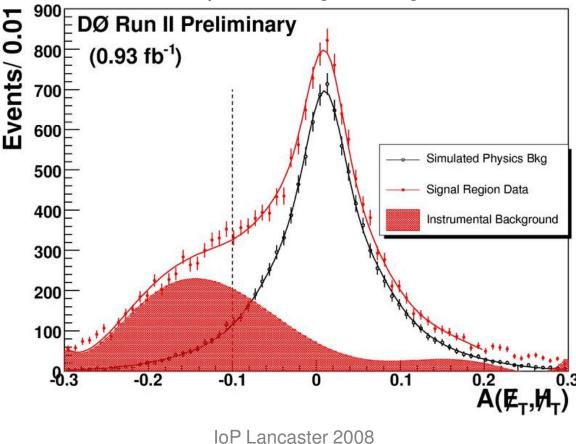
Mainly QCD multi-jet events with mis-measured and fake jets Generally low acceptance, but large cross-section Estimate the magnitude and shape from data

<u>Outline</u>

- 1. Basic cuts
- 2. Neural net b-tagging
- 3. 2nd neural net for event selection

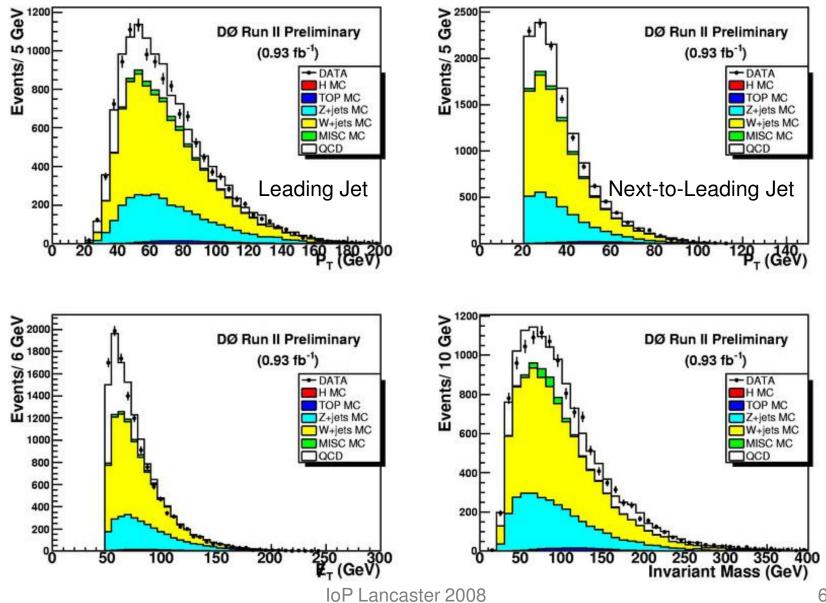
- Using 0.93 fb⁻¹ of data
- E₁ > 50 GeV
- 2 jets with $p_T > 20$ GeV, $|\eta| < 2.5$ signal topology
- $\Delta \phi$ (dijet) < 165° rejects QCD di-jet events ٠
- Isolated EM and muon veto rejects top, W/Z+jets
- H_{T} < 240 GeV rejects top

 $H_{T} = |\Sigma p_{T}(jets)|$ $E_{T} = |\Sigma E_{T}(cal)|$ $P_{T}^{trk} = |\Sigma p_{T}(tracks)|$ Asymmetry $(\not E_T, \not H_T) = (\not E_T - \not H_T) / (\not E_T + \not H_T)$


- -0.1 < Asymmetry(ET,HT) < 0.2 rejects instrumental background

Instrumental Background Estimation Imperial College

Use fit of Asymmetry(\not{E}_T, \not{H}_T)


1. Simulated Physics background: Triple Gaussian fit to MC

- 2. Instrumental background: 6th order polynomial in sideband region
- 3. Combined fit with fixed shapes to signal region for normalization

Pre *b*-tagging

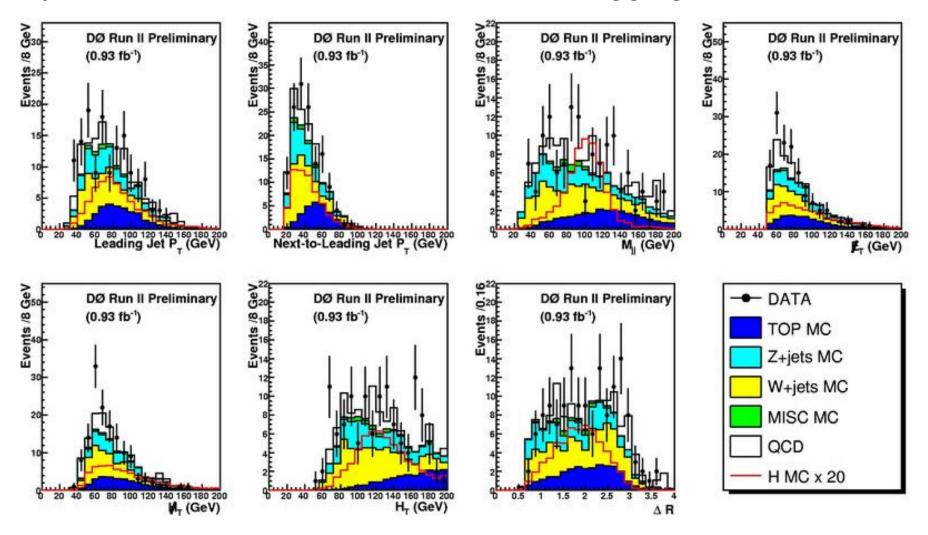
6

2. Neural Net b-tagging

Imperial College London

Combine various variables from track based b-tagging tools in a Neural Network

Train on MC, certify on data


Increase efficiency by ~1/3 for same fake rate over best performing constituent tool

Require Tight-Loose *b*-tagged jets for optimum sensitivity

	Efficiency	ency Mis-tag Rate	
Loose	~73%	~5%	
Tight	~48%	~0.5%	

3. Neural Net Event Selection Imperial College

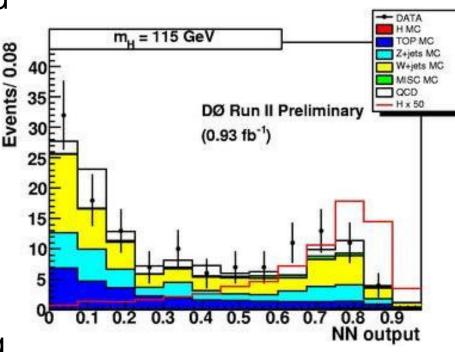
Input variables for 2nd neural net after *b*-tagging:

IoP Lancaster 2008

9

Imperial College

London


7 input variables

Training MC weighted with b-tag probability derived from dedicated sample

Using W/ZH signal MC.

One hidden layer (14 neurons) Train over 200 epochs for each mass point

Separate training and limit-setting MC samples

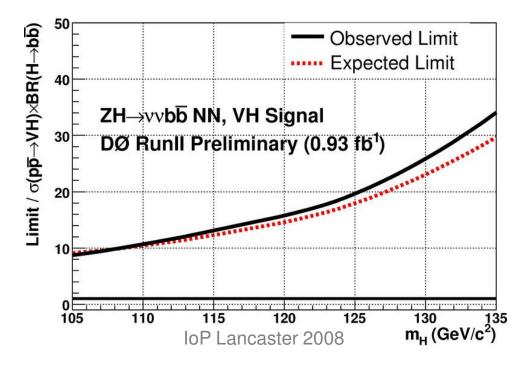
3. NN Event Selection

Final Selection and Errors

Imperial College London

Sample	No <i>b</i> -tag	Double <i>b</i> -tag		Γ
$ZH(m_H = 115 \ GeV)$	2.46	0.88 ± 0.12	Systematic	Value (%)
$WH(m_H = 115 \ GeV)$	1.75	0.61 ± 0.08	Error	
W + jets	6750	52.3	Luminosity	6.1
ightarrow Wbb	397	35.4		
ightarrow Wcc	1170	9.33	Trigger	5
Zjj			33-	
Z ightarrow au au	107	0.25	Jet ID	5
$Z ightarrow u \overline{ u}$	2130	0.63		
Zbb			b-tagging	7
Z ightarrow au au	6.39	0.63		
$Z ightarrow u \overline{ u}$	229	24.9	Total Physics	6-18
Zcc	20 20:02:20:20:20	1 11-11 - 0.047	Background	
Z ightarrow au au	12.8	0.18	U	
$Z ightarrow u \overline{ u}$	467	4.93	Instrumental	20
$t\overline{t}$	172	29.1	Background	
Di-boson	228	3.84	Shape dependent	: evetomatice
Total Physics Background	10100	117 ± 17	• •	systematics
Instrumental Background	2560	172 ± 3.4	included	
Total Background	12700	134 ± 18		
Observed Events	12500	140		
		IoP Lancaster 2	008	10

IoP Lancaster 2008

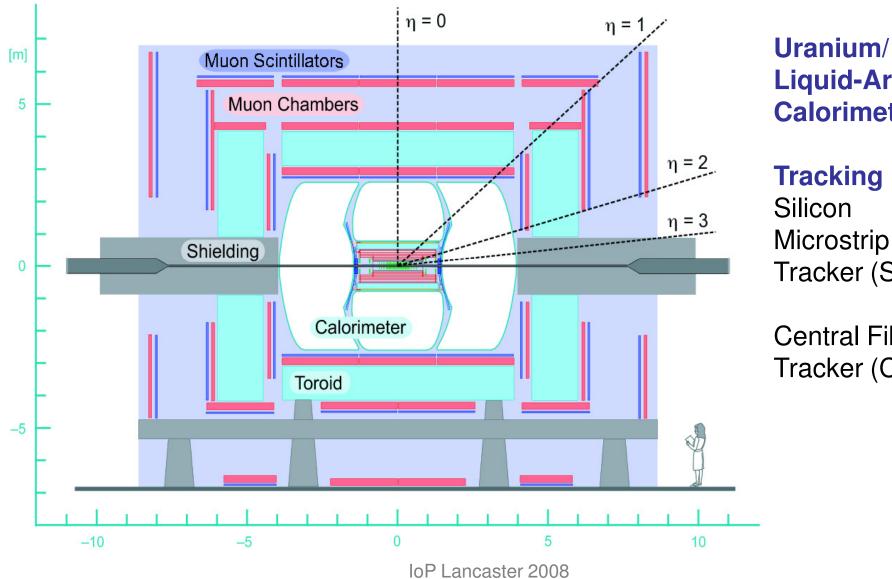


Imperial College London

Modified frequentist CLs approach:

Compare background-only (B) and signal-plus-background (S+B) hypotheses

Higgs Mass (GeV)	$m_H = 105$	$m_H = 115$	$m_H = 125$	$m_{H} = 135$
$ZH(H \rightarrow bb)$ Expected Limit (pb)	1.6	1.5	1.4	1.2
$ZH(H \rightarrow bb)$ Observed Limit (pb)	1.5	1.5	1.4	1.3
$WH(H \rightarrow bb)$ Expected Limit (pb)	4.8	4.3	3.8	3.6
$WH(H \rightarrow bb)$ Observed Limit (pb)	4.4	5.0	4.4	4.2
$VH(H \rightarrow bb)$ Expected Limit (pb)	2.8	2.5	2.3	2.0
$VH(H \rightarrow bb)$ Observed Limit (pb)	2.6	2.7	2.5	2.3


- Searched for SM Higgs boson in 0.93 fb⁻¹ at $\sqrt{s} = 1.96 \text{ TeV}$
- Analyzed 2 b-jet + missing E_T topology
- Sensitive to $ZH \rightarrow vvbb$ and $WH \rightarrow Ivbb$ with unidentified lepton
- Utilized 2 neural networks for b-tagging and event selection
- No deviation from SM expectation observed
- Set upper limits on SM VH cross-section

- DØ 0.26 fb⁻¹result published in PRL; hep-ex/0607022
- RunIIa Preliminary result (0.93 fb⁻¹) in April 2007; DØ Note 5306-CONF
- Updated in November 2007 with Neural Net classifier; DØ Note 5506-CONF
- 2.1 fb⁻¹ RunIIb Preliminary Result in February 2008; DØ Note 5586-CONF
- NN b-tagging Algorithm; FERMILAB-THESIS-2006-43
- Profile Likelihood Systematic Error Treatment; FERMILAB-TM-2386-E

The DØ Detector

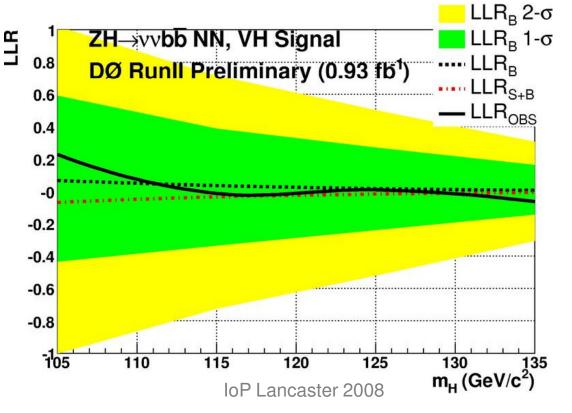
Imperial College London

Liquid-Argon **Calorimeter**

Tracking Silicon Microstrip Tracker (SMT)

Limit Setting Method

Imperial College London


Modified frequentist CLs approach:

Background only (b) and signal plus background (s+b) hypotheses compared to data using Poisson likelihoods.

Probability density function obtained by Gaussian smearing.

Systematic uncertainties included in likelihood ('profile likelihood')

Background constrained by maximising profile likelihood ('sideband fitting').

