Search for a diffuse cosmic neutrino flux using the ANTARES data from 2007 - 2012

Florian Folger for the ANTARES Collaboration TeVPA / IDM Conference, Amsterdam, 24th June 2014

Latest diffuse flux searches with ANTARES

 $CC \nu_{\mu}$

2008 - 2011 (855 / 903 days)

Sensitivity: **4.7 - 10**⁻⁸ GeV/(cm² sr s)

Upper limit: **5.1 - 10**-8 GeV/(cm² sr s)

(quoted 4.8 · 10⁻⁸ was without systematic errors)

Sensitivity: **4.2 - 10**-8 GeV/(cm² sr s)

Upper limit: **7.7 - 10⁻⁸** GeV/(cm² sr s)

(quoted 7.0 · 10⁻⁸ was without systematic errors)

showers

2007 – 2012 (1247 days)

Sensitivity: 2.2 - 10⁻⁸ GeV/(cm² sr s) per flavour

Upper limit: 4.9 - 10⁻⁸ GeV/(cm² sr s) per flavour

combined

work is currently starting...

v_{u} analyses (2008 - 2011)

I

Suppression of atm. muons:

MRF optimization using a dE/dx energy estimator

Expected background events: 8.4

Measured events: 8

Upper limit: **5.1 - 10⁻⁸** GeV/(cm² sr s)

Π

- Include atmospheric muons in the MRF optimization
- Use a multivariate approach to
 - Reconstruct the energy of the muon / muon bundle
 - Optimize the MRF

Expected background events: 8.3

Measured events: 12

Upper limit: **7.7 - 10**-8 GeV/(cm² sr s)

- 3

Shower event reconstruction

Two-step maximum likelihood fit

$$-\log LLH = \sum_{i=1}^{N_{\text{pulses}}} -\log pdf_i$$

- Shower vertex is reconstructed from the time and position information of the hits only (without the hit charge).
- Shower energy and direction are reconstructed from the charge and position information of the hits with the vertex kept fixed.
- Reconstruction is not restricted to contained events.

RECO-QUALITY	Median	Mean	10 / 90 % Quantiles
Vertex error:	4 meters	6 meters	3 / 6 meters
Logarithmic Energy error:	-0.16	-0.24	-0.02 / -0.61
Direction error:	6 deg	19 deg	2 / 66 deg

for showers @ 10 TeV shower energy after the muon filter (vertex IIh < 7.9)

* Bartol [Phys.Rev.D 70:023006 (2004)] ** Enberg [Phys.Rev.D 78:043005 (2008)]

All flavour analysis using shower events (2007-2012)

Cut flow chart on reconstructed events

Muon filter (vllh < 7.9)

Hits on > 2 lines

Sparking event filter

Fitted zenith > 94°

Shower energy > 10 TeV

Cogmic gignel (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
FINAL OPTIMIZED CUTS
EVENT NUMBERS AFTER

Cosmic signal events

Atmospheric background events

THUME OF THUMBED COTO		
Cosmic signal (test flux 1.2 * 10-8 per flav.)	1.75	
Conventional atmospheric neutrinos*	-	2.32
Prompt atmospheric neutrinos**	-	0.56
Tau neutrino estimation	0.78	0.02 (prompt)
Atmospheric muon extrapolation	-	1.85
Correction for missing vertex showers in CC muon simulations	0.26	0.16
High multiplicity muon bundles	-	0.01
TOTAL	2.79	4.92

Retrieved from full run-by-run simulations

Additional estimations and extrapolations

Sensitivity per neutrino flavour:

$$E^2 \cdot \bar{\Phi}_{90\%} = 2.2^{+0.9}_{-0.7} \cdot 10^{-8} \,\text{GeV/cm}^2 \cdot \text{sr} \cdot \text{s}$$

Fitted neutrino zenith angle (after quality cuts)

Data set after

- Muon filter (vertex llh < 7.9)
- Lines > 2
- Sparking filter (OMDist > 15m)

Error bends on Monte-Carlo contain systematic and statistical errors

Error bars on data points indicate Poisson statistical errors.

Fitted shower energy (after quality and zenith cuts)

Data set after

- Muon filter (vertex Ilh < 7.9)
- Lines > 2
- Sparking filter (OMDist > 15m)
- Zenith > 94°

Error bends on Monte-Carlo contain systematic and statistical errors

Error bars on data points indicate Poisson statistical errors.

The result of the shower analysis (1247 days)

- After the zenith cut **60 data events** are measured, where **81.7**+40.0_{-39.6} are expected from **background only**.
- After the very final cut 8 data events remain, where the background only expectation is 4.92^{+2.84}_{-2.95}.
- Following Feldman-Cousins* the 90% confidence upper limit on the diffuse flux is (no systematic uncertainties included)

$$E^2 \cdot \Phi_{90\%} = 3.9 \cdot 10^{-8} \,\text{GeV/cm}^2 \cdot \text{sr} \cdot \text{s}$$

 Taking into account systematic uncertainties using Pole 1.0** (relative background uncertainty: 0.42, rel. signal uncert.: 0.29) the upper limit is:

$$E^2 \cdot \Phi_{90\%} = 4.9 \cdot 10^{-8} \,\text{GeV/cm}^2 \cdot \text{sr} \cdot \text{s}$$

^{* [}Phys.Rev.D 57:3873-3889 (1998)] [Astropart.Phys. 19(3):393-402 (2003)]

^{** [}Comp.Phys.Comm. 158(2):117-123 (2004)]

Diffuse flux limits

Summary

- The latest search for a diffuse cosmic neutrino flux with ANTARES was performed using shower events in the data from 2007-2012 (1247 days)
- 8 events have been observed after the final cuts where 4.9^{+2.8}_{-3.0} are expected from atmospheric background.
- Within the systematic and statistical uncertainties the measurement is compatible with the atmospheric background.
- An upper limit per neutrino flavour on the diffuse cosmic neutrino flux in the energy range from 23 TeV to 7.8 PeV was evaluated to:

$$E^2 \cdot \Phi_{90\%} = 4.9 \cdot 10^{-8} \,\text{GeV/cm}^2 \cdot \text{sr} \cdot \text{s}$$

• The result agrees well with previous analyses in the v_{μ} CC channel.

Backup slides

The 8 remaining data events

Run	Fitted	Fitted	#	Total	Contain-	Run	Run	Quality
ID	ener-	ze-	hits /	char-	\mathbf{ment}	\mathbf{burst}	mean	\mathbf{basic}
	$\mathbf{g}\mathbf{y}$	\mathbf{nith}	${f strings}$	${f ge}$		fracti-	\mathbf{rate}	
	$[{ m TeV}]$	$[^{\circ}]$		[pe]		on	$[\mathrm{kHz}]$	
26397	42.1	125.9	42/3	169	29*	0.41	91	1
27893	16.3	98.2	75/3	321	61*	0.05	63	4
28722	39.1	106.1	286/5	1373	23*	0.04	63	4
43639	87.5	129.7	36/3	74	84*	0.09	90	4
46852	39.3	143.3	91/6	603	84*	0.13	87	1
49425	21.4	100.9	88/6	562	22^{*}	0.36	235	1
51879	15.0	119.6	50/3	318	40*	0.16	100	4
62834	28.1	118.5	99/7	456	69*	0.16	66	4

^{*} Distance in meters to detector edge.

All remaining events have a fitted vertex outside the instrumented volume

Limits for other flux assumptions

	Unbroken cosmic signal flux	Cosmic signal flux with a cut-off at 2 PeV
Normal Enberg ¹ prompt atmospheric flux	Signal events: 2.79 Backgr. events: 4.92 Sensitivity ² : 2.2 · 10 ⁻⁸ POLE UPPER LIMIT ² : 4.9 · 10 ⁻⁸	Signal events: 2.14 Backgr. events: 4.92 Sensitivity ² : 2.9 · 10 ⁻⁸ POLE UPPER LIMIT ² : 6.4 · 10 ⁻⁸
3.8 * Enberg¹ prompt atmospheric flux	Signal events: 2.79 Backgr. events: 6.63 Sensitivity ² : 2.5 · 10 ⁻⁸ POLE UPPER LIMIT ² : 4.1 · 10 ⁻⁸	Signal events: 2.14 Backgr. events: 6.63 Sensitivity ² : 3.2 · 10 ⁻⁸ POLE UPPER LIMIT ² : 5.3 · 10 ⁻⁸

Unblinding result

¹ Phys.Rev.D 78:043005 (2008)

² In units GeV / (cm²-sr-s)

Systematic errors

- The uncertainty of the conventional atmospheric flux was assumed to be +/- 30 %
- The uncertainty on the prompt flux is implemented in the Enberg parametrization in neutrinoflux and is about + 27 / - 41 %
- The systematic error from varying absorption length, scattering length and PMT efficiency by 10% yields on average
 - + 36 / 24 % for shower events
 - + 11 / 16 % for muon track events
- Differences from the RBR v2 to km3 v4r5 have been taken into account by adding an additional systematic error of - 31 %

Shower reconstruction scheme

Hit selection

- Evaluate a rough vertex estimation from the distribution of coincident and big hits
- Apply a cut on the time residual respective this vertex

Shower reconstruction

• 2-step Gulliver maximum-likelihood fit where the likelihood is calculated from Monte-Carlo based pdf values (idea firstly introduced by R. Auer)

$$-\log LLH = \sum_{i=1}^{N_{\text{pulses}}} -\log pdf_i$$

probability that the whole event has been caused by a certain shower assumption

probability that one single hit has been caused by a certain shower assumption (stored in tables that were filled from Monte-Carlo simulations)

Shower vertex reconstruction

Shower energy and neutrino direction reconstruction

3-dimensional table relating for each hit:

- Energy of the shower
- Photon emission angle with respect to neutrino track
- Total expected charge at the vertex $c_{\rm vertex} = c_{\rm pulse} \cdot e^{\frac{d}{\lambda_w}} \cdot \frac{1}{\alpha} \cdot \frac{4\pi d^2}{A_{\rm OM}^2}$

Vertex reconstruction quality

Evaluated from $v_e \& v_\mu$ NC and v_e CC shower events in the run-by-run based simulation.

Direction reconstruction quality

Evaluated from $v_e \& v_\mu$ NC and v_e CC shower events in the run-by-run based simulation.

Shower energy reconstruction quality

Evaluated from $v_e \& v_\mu$ NC and v_e CC shower events in the run-by-run based simulation.

Shower reconstruction efficiency

Evaluated from $v_e \& v_\mu$ NC and v_e CC shower events in the run-by-run based simulation.

Detailed number of events in final full sample

Event type	Conventional	Prompt	Cosmic events
v I	atmospheric events	atmospheric events	
$\nu_e \ \mathrm{NC}$	$0.02^{+0.01}_{-0.01}$	$0.02^{+0.01}_{-0.01}$	$0.32^{+0.05}_{-0.10}$
$\bar{\nu_e}$ NC	$0.01^{+0.004}_{-0.004}$	$0.02^{+0.01}_{-0.01}$	$0.28^{+0.05}$
ν_e CC	$0.42^{+0.26}_{-0.23}$	$0.23^{+0.07}_{-0.12}$	$0.28^{+0.05}_{-0.09}$ $2.08^{+0.35}_{-0.69}$ $2.08^{+0.49}_{-0.49}$
$\bar{\nu_e}$ CC	$0.15^{+0.10}_{-0.09}$	$0.20^{+0.06}_{-0.11}$	$2.89_{-0.95}^{+0.49}$
$\nu_{\mu} { m NC}$	$0.51^{+0.32}_{-0.29}$	$0.02^{+0.01}_{-0.01}$	0.22 + 0.05
$ar{ u_{\mu}} ext{NC}$	$0.10^{+0.06}_{-0.06}$	$0.02^{+0.01}_{-0.01}$	$0.28^{+0.05}_{-0.09}$
$ u_{\mu} \text{ CC}$	$1.05_{-0.38}^{+0.33}$	$0.04_{-0.01}^{+0.01}$	$0.78^{+0.07}_{-0.06}$
$ar{ u_{\mu}}$ CC	$0.19_{-0.07}^{+0.06}$	$0.03_{-0.01}^{+0.01}$	$0.60^{+0.06}_{-0.05}$ $0.32^{+0.05}_{-0.10}$
$ u_{ au}$ NC	0	$0.001^{+0.000}_{-0.001}$	$0.32^{+0.05}_{-0.10}$
$ar{ u_{ au}}$ NC	0	$0.001^{+0.000}_{-0.000}$	$0.28^{+0.05}_{-0.09}$
ν_{τ} CC	0	$0.010^{+0.005}_{-0.007}$	1 00±0 55
$\bar{\nu_{ au}}$ CC	0	$0.008^{+0.003}_{-0.005}$	$1.22^{+0.65}_{-0.65}$ $1.10^{+0.55}_{-0.63}$
atm. muons	$1.86^{+1.53}_{-1.53}$	0	0
Total	$4.31_{-2.68}^{+2.67}$	$0.61^{+0.19}_{-0.30}$	$10.45^{+2.37}_{-3.61}$
	Bartol 2004 [Phys.Rev.D 70:023006]	Enberg 2008 [Phys.Rev.D 78:043005]	24