

Results and future Prospects of Borexino

ASTROPARTICLE PHYSICS 2014 Amsterdam

Mikko Meyer on behalf of the BOREXINO Collaboration

Mikko Meyer

Institut für Experimentalphysik (Universität Hamburg) Astroparticle Physics 2014 - Amsterdam

NIVERSE

Borexino Collaboration

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Borexino Experiment

Borexino Experiment

Solar Neutrinos

- First observation of ⁷Be-v
- Limit on CNO

Seasonal variations

Supernova Neutrinos Waiting for the next one...

Geo-Neutrinos

- Null geo-v excluded at 6.10⁻⁶ probability

Mikko Meyer Astroparticle Physics 2014 - Amsterdam

Slide 4 June 2014

PART I: Borexino Phase I Solar Neutrinos and Geo-Neutrinos

Borexino Detector

Active volume

270 t of liquid scintillator (PC) nylon vessel of R=4.25 m Radiopurity: U/Th < 10^{-17} g/g

Inactive buffer volume

Shielding of external $\gamma\text{-rays}$

Stainless steel sphere R = 6.85 m 2212 PMTs

Outer muon veto

2.1 kt of water, R=9 m 208 PMTs Muon-Cherenkov veto

Borexino Detector Site

- 1400 m of rock shielding
- 3800 m.w.e. \rightarrow 1.2 muons /(m² · h)

Neutrino Detection

Neutrino-Electron Scattering

- Energy transfer analogous to Compton scattering
- Recoil of electron \rightarrow Scintillation light
- For v_e : CC + NC

Inverse β -decay

- Prompt signal: Positron annihilation
- Delayed signal: Neutron capture on hydrogen
- Signal is time and space correlated
- Energy threshold: 1.806 MeV

Solar Neutrinos: pp-Chain and CNO

Proton-Proton-Chain

~99% of energy

CNO Cycle ~1% of energy

Adopted from: http://en.wikipedia.org/wiki/Proton%E2%80%93proton_chain_reaction and http://en.wikipedia.org/wiki/CNO_cycle

Solar Neutrinos

Final results of Borexino Phase-I on low energy solar neutrino spectroscopy Borexino Collaboration (G. Bellini et al) arXiv:1308.0443 [hep-ex]

Precise measurement of ⁷Be (including annual modulation)

arXiv:1308.0443 [hep-ex]

arXiv:1110.3230 [hep-ex]

Solar Neutrinos: pep and CNO Neutrinos

Results from Phase I (May 2007 – May 2010) Phys. Rev. Lett. 112, 068103 (2012)

- pep v Rate: R=(3.1 ± 0.6 ± 0.3) cpd/100 t
- P_{ee} = 0.62 ± 0.17 at 1.44 MeV
- Strongest limit on CNO: Φ_{CNO} < 7.7 · 10⁸ cm⁻¹s⁻¹

Solar Neutrinos: P_{ee} after Borexino Results from Phase I (May 2007 – May 2010)

Geo-Neutrinos

Data from 1353 days

- 46 golden coincides
- Null geo-v excluded at 6.10⁻⁶

80

PART II: SOX

Search for Sterile Neutrinos

Motivation

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

UH

11

SOX: Short distance neutrino Oscillations with BoreXino

$$P(\mathbf{v}_e \rightarrow \mathbf{v}_e) \approx 1 - \sin^2(2\theta_{14}) \sin^2(\Delta m_{41}^2 \frac{L}{4E})$$

Motivation:

- Search for sterile neutrinos and other short distance effects
- Measurement of neutrino magnetic moment
- Measurement of ${\rm g}_{\rm _V}$ and ${\rm g}_{\rm _A}$ at low energy

Hints for Sterile Neutrinos

- Re-evaluation of neutron life time
- \rightarrow Cross section of inverse beta decay (IBD) might be affected
- Reactor anomaly: Flux re-calculations
- → Neutrino deficit observed
- LSND anomaly
- Cosmological hints
- Gallex and SAGE calibration campaign with artificial neutrino source
- → Both experiments show a deficit w.r.t. expectations

SOX Concept Phase A: ⁵¹Cr and ¹⁴⁴Ce-¹⁴⁴Pr

- 8.25 m beneath detector
- EC source (⁵¹Cr) and
- β⁻ (¹⁴⁴Ce⁻¹⁴⁴Pr)

Phase B: ¹⁴⁴Ce-¹⁴⁴Pr

- Source in water tank
- β⁻ source
- Phase C: ¹⁴⁴Ce-¹⁴⁴Pr
- Source in center of detector
- β⁻ source

Location for ⁵¹Cr Source

Artificial Neutrino Sources

Source	Production	τ [days]	Decay mode	Energy [MeV]	Mass [kg/MCi]
⁵¹ Cr	Neutron irradiation of ⁵⁰ Cr in reactor	40	EC γ 320 keV (10%)	0.746	0.011
¹⁴⁴ Ce- ¹⁴⁴ Pr	Chemical extraction from spent nuclear fuel	411	β ⁻	<2.9985	7.6

⁵¹Cr Source

- Disappearance experiment
- Sensitivity depends on
 - Statistics (source activity)
 - Error on activity (in particular) and on efficiency
- Background is approximately constant while signal is not
- Additional: Spatial waves

Oscillometry

Wavelength: smaller than detector size, but bigger than resolution \rightarrow Direct measurement of Δm_{14}^2 and θ_{14}

Mikko Meyer Astroparticle Physics 2014 - Amsterdam Source in detector center

Expected Sensitivity (Phase A) sources in pit 100 ⁵¹Cr Time: ~100 days 10 Activity: 10 MCi ۵m²₄₁ [eV²] In r_{FV} < 3.3 m</p> ¹⁴⁴Ce-¹⁴⁴Pr 0.1 Time: ~1.5 years Activity: 100 kCi 0.01 In r_{FV} < 4.25 m</p>

Neutrino 2014 Additional information: JHEP08 (2013) 038

r_{FV}: Radius of fiducial volume

r_{FV}: Radius of fiducial volume

Further Reading...

JHEP

PUBLISHED FOR SISSA BY 2 SPRINGER

RECEIVED: May 24, 2013 ACCEPTED: July 9, 2013 PUBLISHED: August 8, 2013

SOX: Short distance neutrino Oscillations with BoreXino

G. Bellini,^h D. Bick,^q G. Bonfini,^e D. Bravo,^o B. Caccianiga,^h F. Calaprice,^k A. Caminata,^c P. Cavalcante,^e A. Chavarria,^k A. Chepurnov,^p D. D'Angelo,^h S. Davini,^r A. Derbin,¹ A. Etenko,^g G. Fernandes,^c K. Fomenko,^{b,e} D. Franco,^a C. Galbiati,^k C. Ghiano,^a M. Göger-Neff,^m A. Goretti,^k C. Hagner,^q E. Hungerford,^r Aldo Ianni,^e Andrea Ianni,^k V. Kobychev,^f D. Korablev,^b G. Korga,^r D. Krasnicky,^c D. Kryn,^a M. Laubenstein,^e J.M. Link,^o E. Litvinovich,^g F. Lombardi,^h P. Lombardi,^h L. Ludhova,^h G. Lukyanchenko,^g I. Machulin,^g S. Manecki,^o W. Maneschg,ⁱ E. Meroni,^h M. Meyer,^q L. Miramonti,^h M. Misiaszek,^d P. Mosteiro,^k V. Muratova,^l L. Oberauer,^m M. Obolensky,^a F. Ortica,^j K. Otis,ⁿ M. Pallavicini,^c E. Pantic,^s L. Papp,^o S. Perasso,^c A. Pocar,ⁿ G. Ranucci,^h A. Razeto,^e A. Re,^h A. Romani,^j N. Rossi,^e R. Saldanha,^k C. Salvo,^e S. Schönert,^m D. Semenov,^l H. Simgen,ⁱ M. Skorokhvatov,^g O. Smirnov,^b A. Sotnikov,^b S. Sukhotin,^g Y. Suvorov,^{s,g} R. Tartaglia,^e G. Testera,^c E. Unzhakov,^l R.B. Vogelaar,^o H. Wang,^s M. Wojcik,^d M. Wurm,^q O. Zaimidoroga,^b S. Zavatarelli,^c and G. Zuzel^d ^a APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonne Paris Cité, France ^b Joint Institute for Nuclear Research, Dubna 141980, Russia

Summary

- Borexino: liquid scintillator detector with unprecedented radiopurity
- Broad range of solar neutrino fluxes (7Be, 8B, pep, CNO) and geo-neutrinos
- SOX will test reactor antineutrino anomaly
- Two sources will be placed near or inside Borexino
 - ⁵¹Cr (neutrino)
 - ¹⁴⁴Ce-¹⁴⁴Pr (antineutrino)

Mikko Meyer – Universität Hamburg - mikko.meyer@desy.de Astroparticle Physics 2014 - Amsterdam

Mikko Meyer – Universität Hamburg - mikko.meyer@desy.de Astroparticle Physics 2014 - Amsterdam

Additional Physics Supernova Neutrinos Other Low Energy Neutrino Physics with SOX Weinberg angle Magnetic moment

Mikko Meyer Astroparticle Physics 2014 - Amsterdam

March 2014

Hubble Heritage Team (AURA/STScl/NASA)

Anti-Neutrino Detection

IBD: $\overline{\nu_e}$ + p \rightarrow e⁺ + n

- Prompt signal: Positron annihilation
- Delayed signal: Neutron capture on hydrogen _____
- Signal is time and space correlated
- Nearly background free
- Neutrino energy is correlated to visible energy by:
 - $E_e = E_v (M_n M_p)$

 E_e : Positron energy, E_v : Neutrino Energy, M_n : Neutron mass M_p : Proton mass

Signal + Background

First pep detection and CNO limit

¹¹C threefold coincidence

- First direct detection of pep neutrinos
- Possible thanks to low background and ¹¹C rejection techniques
- Triple concidence

Importance of CNO: SSM Metallicity

⁷Be and ⁸B data cannot discriminate models

 \rightarrow CNO measurement needed!

 \rightarrow Phase II

Geo-Neutrinos

	LOC (TNU)	ROC (TNU)	DATA (TNU)	MANTLE (TNU)	U+Th (TW)
Kamland	17.7±1.4	7.3±1.4	31.1±7.3	6.1±7.6	13±9
Borexino	9.7±1.3	13.7 ±2.5	38.8±12.0	15.4±12.3	23±14

Chronology: Artificial Neutrino Source

- The idea to deploy a source in Borexino dates back to the beginning of the project
- Successfully implemented by Gallex (LNGS) and SAGE (Russia)
- Recently, revised and re-proposed by many authors to search for sterile neutrinos:
 - N.G. Basov, V. B. Rozanov, JETP 42 (1985)
 - Borexino proposal, 1991 (Sr90)
 - J.N.Bahcall,P.I.Krastev,E.Lisi, Phys.Lett.B348:121-123,1995
 - N.Ferrari,G.Fiorentini,B.Ricci, Phys. Lett B 387, 1996 (Cr51)
 - I.R.Barabanov et al., Astrop. Phys. 8 (1997)
 - Gallex coll. PL B 420 (1998) 114 Done (Cr51)
 - A.Ianni,D.Montanino, Astrop. Phys. 10, 1999 (Cr51 and Sr90)
 - A.Ianni,D.Montanino,G.Scioscia, Eur. Phys. J C8, 1999 (Cr51 and Sr90)
 - SAGE coll. PRC 59 (1999) 2246 Done (Cr51 and Ar37)
 - SAGE coll. PRC 73 (2006) 045805
 - C.Grieb, J.Link, R.S.Raghavan, Phys. Rev. D75:093006,2007
 - V.N.Gravrin et al., arXiv: nucl-ex:1006.2103
 - C.Giunti,M.Laveder, Phys.Rev.D82:113009,2010
 - C.Giunti,M.Laveder, arXiv:1012.4356
 - SOX proposal ERC 320873 Feb. 2012 approved Oct. 2012

Mikko Meyer

Astroparticle Physics 2014 - Amsterdam

Phases of the experiment as defined in JHEP08 (2013) 038.

Expected Sensitivity

SOX-A:

- 10 MCi
- 1% precision in activity, 1% in FV determination
- 2015/16 (any time during next solar neutrino phase)
- SOX-B and SOX-C:
 - 75 kCi (B), 50 kCi (C)
 - 1.5% precision in activity
 2.0% bin-to-bin error for systematics
 - 2015/2016? (SOX-B)
 - 2016-2017 (SOX-C) (major detector upgrade needed)

Other low Energy Neutrino Physics

- Weinberg angle
- Magnetic moment
- Coupling constants g_V and g_A (CHARM II: E~10 GeV)

Technology: Cr-51 Source

- SOX concept similiar to GALLEX 1994
- ~36 kg, 50Cr enriched at 38% irradiated in high neutron flux reactor
- Possible Reactors: Russia (best), USA, Europe
- W shield
- Special attention must be paid to the thermal design
 - 10 MCi (2 kW)
 - External T not to high
 - Internal T below syntherization (750°)

Source Production (GALLEX)

Natural Chromium consists of 4 stable istotopes

Production steps:

- Chromium isotopic enrichment
 - $CrO_2F_2 \rightarrow CrO_3$

Chromium irradiation

- Irradiation @ Siloé (Grenoble, France), swimming pool reactor with 35MW thermal power
- Dedicated core speciafally built to contain 34 fuel elements
- Checker-board configuration
- Core immersed in water (moderator, coolant, shielding)

Table 1:

Isotopic composition of chromium and thermal neutron capture cross-section (measured at 2200m/s)

	Isotopic composition of natural Cr	Isotopic composition of the enriched Cr used in GALLEX	Thermal neutron capture cross- sections (barns)
⁵⁰ Cr	4.35%	38.6%	15.9
⁵² Cr	83.8%	60.7%	0.76
⁵³Cr	9.5%	0.7%	18.2
⁵⁴ Cr	2.35%	<0.3%	0.36

Source Production (GALLEX): irradiation

Physics Letters B 342 (1995) 440-450

Other Proposals with Artifical Neutrino Sources

- SNO+Cr
- ¹⁴⁴Ce/¹⁴⁴Pr @ Daya Bay

