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•  Compute expected signal 
–  Usually for 100% branching fraction in final channel 

•  Perform likelihood analysis 
–  Fold with instrument response, build model count 

spectrum with and w/o DM component, compare with  data  
•  Estimate systematic uncertainties on DM flux Upper Limit 

–  instrument performance, (optional) subtraction of 
astrophysical foreground (diffuse emission, unresolved 
sources), DM distribution 9 
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• How to detect WIMPs (other than gravitationally)  

γ, 
ν, 
e±, 
p± 
D-

decay            

in astrophysical 
systems - remotely

In the Early Universe: 
DM kept in 
equilibrium w SM by 
self-annihilations 
〈σv〉thermal. 

Today, DM expected to 
annihilate with the 
same 〈σv〉thermal, in 

places where its 
density is enhanced!

@ ≤Mz
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Alex Drlica-Wagner   |   Fermi-LAT Dark Matter

Indirect Detection of 
Particle Dark Matter

2

WIMP

?

INDIRECT SEARCHES

Fermi-LAT

Every ~3 Hours

Fermi LAT

Launch June 11, 2008. 

e+e- pair conversion instrument: Si tracker, CsI 
calorimeter & anti-coincidence detector (good 
gamma vs charged CR discrimination).

Data made public within 24 hours (http://
fermi.gsfc.nasa.gov/ssc/).

more @L. Baldini’s talk

energy range 20 MeV->300 GeV.

http://fermi.gsfc.nasa.gov/ssc/
http://fermi.gsfc.nasa.gov/ssc/
http://fermi.gsfc.nasa.gov/ssc/
http://fermi.gsfc.nasa.gov/ssc/
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1) The flux of charged particles passing through the LAT is several thousand times larger 
than the γ-ray flux ->  several stages of event selection are needed to purify the γ-ray 
content.
The event analysis requires knowledge of the LAT, the physics of particle interactions 
within its volumes, and of the particle backgrounds in the Fermi orbit.
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Fig. 7.— Rates at several stages of the data acquisition and reduction process on a typical
day (2011 August 17). Starting from the highest, the curves shown are for the rates: (i) at the
input of the hardware trigger process (trigger request), (ii) at output of the hardware trigger
(trigger accept), (iii) at the output of the on-board filter, (iv) after the loose P7TRANSIENT

γ-ray selection, (v) after the tighter P7SOURCE γ-ray selection, and (vi) the P7SOURCE γ-ray
selection with an additional cut on the zenith angle (θz < 100◦). See § 3 for more details
about the event selection stages.

that the LAT boresight traces across the sky during any two orbit period is only
slightly different than during the two previous or subsequent orbits.

2.4. Ground-Based Data Processing

Reconstructing the signals in the individual detector channels into a coherent picture
of a particle interaction with the LAT for each of the several hundred events collected every
second is a formidable task. We will defer detailed discussion of the event reconstruction
and classification to § 3; here we describe just the steps to give a sense of the constraints.

1. Digitization: we decompress the data and convert the information about signals in indi-
vidual channels from the schema used in the electronics readout to more physically motivated
schema—such as grouping signals in the ACD by tile, rather than by readout module.

2. Reconstruction: we apply pattern recognition and fitting algorithms commonly used in
high-energy particle physics experiments to reconstruct the event in terms of individual TKR
tracks and energy clusters in the CAL and to associate those objects with signals in the ACD
(see § 3.2).

3. Event analysis : we evaluate quantities that can be used as figures of merit for the event
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Fig. 12.— Event display of a simulated 27 GeV γ ray (a) and zoom over the CAL (b)
and TKR (c) portions of the event. The small crosses represent the clusters in the TKR,
while the variable-size squares indicate the reconstructed location and magnitude of the
energy deposition for every hit crystal in the CAL. The dotted line represents the true γ-ray
direction, the solid line is the CAL axis (§ 3.2.1) and the dashed lines are the reconstructed
TKR tracks (§ 3.2.1). The backsplash from the CAL generates tens of hits in the TKR, with
two spurious tracks reconstructed in addition to the two associated with the γ ray (note
that they extrapolate away from the CAL centroid and do not match the CAL direction).
It also generates a few hits in the ACD, which, however, are away from the vertex direction
extrapolation and therefore do not compromise our ability to correctly classify the event as
a γ ray.

DM search: challenges

[Ackermann+, ApJ. Suppl., 2012]
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DM search: challenges

2) Spiral Galaxies (as our own) are strong gamma-ray sources:
lots of interstellar gas which both leads to star production (CR sources) and makes target 
for CRs to produce gamma rays. -> diffuse emission ~80% of the Fermi LAT photons.

Triangulum Galaxy



GRB - 2013ApJS..209...11A 

Pulsar - 2013ApJS..208...17A Hard Sources - 2013, ApJS, 209, 34 

All-sky variability - 2013, ApJ, 771, 57 
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3) GeV gamma ray sky is a crowded place: ~2000 point sources in the 2FGL:
Galactic: ~100 pulsars 
Extragalactic: ~800 AGNs
the point source contribution needs to be modeled and accounted for (both for 
resolved sources and unresolved counterparts).

[Ackermann+, ApJ 2011]
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Fig. 9.— Locations of the sources in the Clean Sample. Red: FSRQs, blue: BL Lacs, magenta:

non-blazar AGNs, green: AGNs of unknown type.

Red: FSRQs, blue: BLLacs, green: AGN of unknown type.

DM search: challenges
Galactic point sources Extragalactic point sources
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FIG. 1. Known dwarf spheroidal satellite galaxies of the Milky Way overlaid on a Hammer-Aitoff
projection of a 4-year LAT counts map (E > 1 GeV). The 15 dwarf galaxies included in the

combined analysis are shown as filled circles, while additional dwarf galaxies are shown as open

circles.
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• Point sources:
✴ dark satellites [Ackermann+,1201.2691; Hooper+,1208.0828 Zechlin+,

1210.3852,...] 
✴ dwarf spheroidal Galaxies [Ackermann+,1108.3546& 1310.0828; Geringer-

Sameth+, 1108.2914, Mazziotta+,1203.6731, ...]
✴ Galaxy clusters [Han+1207.6749, Ackermann+,1002.2239,                     

Sanchez-Conde et al. 2011; Ando & Nagai 2012 ...]

• Spectral search:
[Weniger+, 1204.2797, 
Ackermann+,
1001.4836&1205.2739
&1305.5597...]

• Diffuse emission:
✴ Galactic Center [Hooper+,1110.0006; Abazajian+, 1207.6047&1402.4090;  

Huang+, 1310.7609; Daylan+,1402.6703; Gomez-Vargas+, 1308.3515...]
✴ Low Galactic latitudes [Ackermann+,1205.6474, ...]
✴ isotropic flux [Abdo+,1002.3603, Bringmann+,1303.3284; Cholis+, 1312.0608]
✴ angular anisotropies [Ackermann+,1202.2856; Gomez-Vargas+, 1303.2154, ...]

Fermi LAT data used for a rich DM search program, on various scales! 
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FIG. 5. Constraints on the dark matter annihilation cross section at 95% CL derived from a
combined analysis of 15 dwarf spheroidal galaxies assuming an NFW dark matter distribution
(solid line). In each panel bands represent the expected sensitivity as calculated by repeating
the combined analysis on 300 randomly-selected sets of blank fields at high Galactic latitudes in
the LAT data. The dashed line shows the median expected sensitivity while the bands represent
the 68% and 95% quantiles. For each set of random locations, nominal J-factors are randomized
in accord with their measurement uncertainties. Thus, the positions and widths of the expected
sensitivity bands reflect the range of statistical fluctuations expected both from the LAT data and
from the stellar kinematics of the dwarf galaxies. The most significant excess in the observed limits
occurs for the bb̄ channel between 10GeV and 25GeV with TS=8.7 (global p-value of p ≈ 0.08).
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FIG. 5. Constraints on the dark matter annihilation cross section at 95% CL derived from a
combined analysis of 15 dwarf spheroidal galaxies assuming an NFW dark matter distribution
(solid line). In each panel bands represent the expected sensitivity as calculated by repeating
the combined analysis on 300 randomly-selected sets of blank fields at high Galactic latitudes in
the LAT data. The dashed line shows the median expected sensitivity while the bands represent
the 68% and 95% quantiles. For each set of random locations, nominal J-factors are randomized
in accord with their measurement uncertainties. Thus, the positions and widths of the expected
sensitivity bands reflect the range of statistical fluctuations expected both from the LAT data and
from the stellar kinematics of the dwarf galaxies. The most significant excess in the observed limits
occurs for the bb̄ channel between 10GeV and 25GeV with TS=8.7 (global p-value of p ≈ 0.08).
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FIG. 5. Constraints on the dark matter annihilation cross section at 95% CL derived from a
combined analysis of 15 dwarf spheroidal galaxies assuming an NFW dark matter distribution
(solid line). In each panel bands represent the expected sensitivity as calculated by repeating
the combined analysis on 300 randomly-selected sets of blank fields at high Galactic latitudes in
the LAT data. The dashed line shows the median expected sensitivity while the bands represent
the 68% and 95% quantiles. For each set of random locations, nominal J-factors are randomized
in accord with their measurement uncertainties. Thus, the positions and widths of the expected
sensitivity bands reflect the range of statistical fluctuations expected both from the LAT data and
from the stellar kinematics of the dwarf galaxies. The most significant excess in the observed limits
occurs for the bb̄ channel between 10GeV and 25GeV with TS=8.7 (global p-value of p ≈ 0.08).
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[Ackermann+, 1310.0828, PRD 2014]

[Ackermann+, 1205.6474, ApJ 2012]
• Electrons: 
✴ from DM annihilation in the Sun [Schuster+, 0910.1839; Ajello+,1107.4272] 
✴ local electron ANISOTROPY [Abdo+,1008.5119] 

http://arXiv.org/abs/arXiv:1110.0006
http://arXiv.org/abs/arXiv:1110.0006
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Outline

• Focus on the newest DM results from the Fermi team:
• Cosmological DM annihilations:
• Low energy spectral line search (A. Albert+,1406.3430, JCAP submitted)

• new kid on the block: Smith high-velocity cloud (A. Drlica-Wagner+, 1405.1030, APJ 
accepted)

• Sneak-peak:
• near future results: DM annihilation in Galaxy Clusters →S. Zimmer’s talk
• Pass8: →L. Baldini’s talk

http://arXiv.org/abs/arXiv:1405.1030
http://arXiv.org/abs/arXiv:1405.1030
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Fig. 9.— Locations of the sources in the Clean Sample. Red: FSRQs, blue: BL Lacs, magenta:

non-blazar AGNs, green: AGNs of unknown type.

• Expect contribution from: 
unresolved Blazars, Radio 
Galaxies, Star Forming Galaxies 

Isotropic emission: sources

Markus Ackermann  |  Fermi Symposium, Monterey  |  11/01/2012  |  Page  18

The Origin of the EGB

4

Why is this important ?
! The Extragalactic Gamma-ray Background may encrypt the signature of the

most powerful processes in astrophysics

Blazars contribute
20-100% of the
EGB (Stecker&Salomon96,
Mücke&Pohl00,
Narumoto&Totani04,Dermer0
7, Inoue&Totani09)

Emission from star
forming galaxies (e.g.
Pavlidou&Fields02)
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particle accelerated
in Intergalactic
shocks (Loeb&Waxmann00)
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• ... and WIMP annihilations (from all 
DM halos at all redshifts), if 
contributing to the gamma ray sky.

χ

χ

γ γ

SM

SM
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• Challenges:

• Estimate of the ‘guaranteed’ (astrophysical) contributions to the isotropic signal

• Strength of the DM gamma ray signal: depends on DM clustering properties at 
various (small!) scales  

• DM signal WITHIN our Galaxy: could it bias the measurement of the isotropic 
spectral flux?

• Two complementary approaches:
• Isotropic spectral flux: single power-law ->harder to interpret; BUT higher 

statistics-extended energy range

• angular anisotropy of high latitude emission: harder measurement&smaller 
statistics, BUT better handle on the Galactic foregrounds (cut large scales), 
additional handle from cross correlations with galaxy surveys

Cosmological DM annihilation



• Challenges:

• Estimate of the ‘guaranteed’ (astrophysical) contributions to the isotropic signal

• Strength of the DM gamma ray signal: depends on DM clustering properties at 
various (small!) scales  

• DM signal WITHIN our Galaxy: could it bias the measurement of the isotropic 
spectral flux?

• Two complementary approaches:
• Isotropic spectral flux: single power-law ->harder to interpret; BUT higher 

statistics-extended energy range

• angular anisotropy of high latitude emission: harder measurement&smaller 
statistics, BUT better handle on the Galactic foregrounds (cut large scales), 
additional handle from cross correlations with galaxy surveys

Cosmological DM annihilation

-> more @A. 
Cuoco’s talk
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[Fermi LAT coll., submitted to APJ.]

more @ M. 
Ackermann 
talk

Isotropic flux: measurement

• extended energy range: 200 MeV - 100 GeV -> 100 MeV - 820 GeV. 
– two custom event selections optimized for LOW (<13 GeV) and HIGH (>13 GeV) energies
– detailed modeling of the Galactic Diffuse emission

– Extensive detector-level simulations used for initial estimate of residual cosmic-ray background

Assembling the Gamma-Ray Sky

Primary Electron IC

Secondary & Nuclei IC

Bremss

Pion Decay

Dark Matter

Source Residuals

Isotropic:
EGB, Instumental

Normalization

Free, Gaussian, Fixed

Masking

Galactic Plane
Sources

Binning

12 Annular Bins
80 Logarithmic Energy Bins

Upcoming Additions

IC Anisotropic
DM IC (lepto-phillic models)
Alternative ISRFs

Brandon Anderson (UCSC) IDM 2010 8 / 16

+~ +

– 50 –

No association Possible association with SNR or PWN
AGN Pulsar Globular cluster
Starburst Gal PWN HMB
Galaxy SNR Nova

2702853003153303450153045607590
−30

−15

0

15

30

Galactic longitude (deg)

G
al

ac
tic

 la
tit

ud
e 

(d
eg

)

Fig. 17.— Full sky map (top) and blow-up of the inner Galactic region (bottom) showing

flagged sources by source class. Sources potentially confused with diffuse emission, i.e., those
with a ‘c’ designator in their names (and for which Flag 6 is set) are shown in red; those

with any other flag set are shown in blue. Sources with no flag set are shown as small dots.

Galactic diffuse Point sources50m data Isotropic  
gamma rays+ 
residual 
charged CRs. 
IGRB: CR 
subtracted. 



JCAP04(2010)014

could also receive a contribution from unresolved Galactic DM subhalos [31, 32]. We will
focus mainly on limiting the extragalactic DM signal in this work, but comment carefully on
the possible size of Galactic contributions. A different approach to extract a DM signal from a
full sky analysis, which we will not follow, is to analyze the power spectrum of the gamma-ray
signal, which may contain identifiable signatures on different angular scales [33–37].

There are several important uncertainties inherently present when trying to constrain
DM properties from the type of analysis presented in [30]. The largest comes from the the-
oretical modeling of the expected DM annihilation luminosity. We use recently presented
results from the ‘Millennium II’ simulation of cosmic structure formation [38, 39], as well
as the approach in the Fermi-LAT pre-launch study [40], to calculate the DM contribution
to the IGRB signal. Another uncertainty stems from the contribution of more conventional,
astrophysical sources to the extragalactic gamma-ray signal, which is currently hard to quan-
tify. A large contribution is believed to originate from unresolved point sources, with the
most important potentially being unresolved blazars [41–45]. Other sources, such as ordinary
star forming galaxies [46, 47] and in particular starburst galaxies [48], as well as structure
shocks in clusters of galaxies [49–53], might also contribute (see, e.g., [54] for a short review).
The Fermi-LAT is expected to improve our knowledge of these sources and increase our un-
derstanding of the shape and normalization of their contribution to the IGRB in the near
future (for early results, see [55]). We address these background uncertainties by presenting
both very conservative and more theoretically-motivated limits on the DM contribution to
the IGRB signal.

The paper is organized as follows. In section 2 we describe the calculation of the isotropic
gamma-ray flux from cosmological distant DM annihilations, and comment on the potential
contribution from Galactic DM. In section 3 we motivate and describe the particle physics
DM models we constrain. Section 4 contains a description of our procedure for obtaining the
limits, and in section 5 we present and discuss our results. Section 6 contains our summary.

2 Dark matter induced isotropic gamma-ray flux

2.1 Extragalactic

There are several ingredients necessary to calculate the flux of gamma-rays from cosmological
DM annihilation. In addition to the gamma-ray yield per annihilation, assumptions need to
be made on the distribution and evolution of DM halos in the Universe. Also, for high-energy
gamma-rays, the effects of intergalactic absorption become important and has to be taken
into account. The flux from DM induced extragalactic photons can be expressed as, [23],

dφγ

dE0
=

�σv�
8π

c

H0

ρ̄2
0

m
2
DM

�
dz(1 + z)3

∆2(z)
h(z)

dNγ(E0(1 + z))
dE

e
−τ(z,E0)

, (2.1)

where c is the speed of light, H0 the Hubble constant equal to 100×h km s−1/Mpc, τ(z, E0) the
optical depth, �σv� the sample averaged DM annihilation cross section times relative velocity
(hereinafter referred to as cross section), dNγ/dE the gamma-ray spectrum at emission,
mDM the DM mass, and ρ̄0 its average density today, while h(z) =

�
ΩM (1 + z)3 + ΩΛ

parameterizes the energy content of the Universe. The quantity ∆2(z), as defined in [23],
describes the enhancement of the annihilation signal arising due to the clustering of DM into
halos and subhalos (relative to a uniform DM distribution in the Universe). For the ΩM ,
ΩΛ, and h we will consistently adopt the values used in [23] and [38]; which will be the two
references we follow in order to derive ∆2(z).
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The DM extragalactic annihilation flux 
can be computed in the Halo Model 
from 3 or more quantities 
determined from simulations 
or 
directly from the Power Spectrum, 
with minimal assumptions

Conclusion

Halo Model:

F = c3v(M, z)
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0 dxx2κ2(x)
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Power Spectrum:
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2π2
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The mass profile and accretion history of CDM haloes 1107

Figure 2. Mass dependence of the best-fitting Einasto parameters for all
haloes in our sample at z = 0. Only relaxed haloes with more than 5000
particles within the virial radius are considered. The top and bottom panels
show, respectively, the concentration, c = r200/r−2, and shape parameter, α,
as a function of halo virial mass. Individual points are coloured according to
the third parameter (see colour bar on the right of each panel). The connected
symbols trace the median values for each Millennium Simulation (see legend
in the top panel); thin solid lines delineate the 25 to 75 percentile range.
The dashed curves indicate the fitting formulae proposed by Gao et al.
(2008). For clarity only 10 000 haloes per simulation are shown in this
figure. Haloes shown in grey are systems where the best-fitting scale radius
is smaller than the convergence radius; these fits are deemed unreliable
and the corresponding haloes are not included in the analysis. The grey
vertical bars highlight three different mass bins used to explore parameter
variations at fixed halo mass (see Sections 4.3 and 4.4). The small boxes
indicate haloes in each of those bins with average, higher-than-average and
lower-than-average values of α (bottom panel) or of the concentration (top
panel).

concentration (Neto et al. 2007). An ideal definition of formation
time would result in a natural correspondence between the charac-
teristic density of a halo at z = 0 and the density of the Universe at
the time of its assembly.

We explore two possibilities in Fig 3. Here, we show the mean
density enclosed within various characteristic radii at z = 0 ver-
sus the critical density of the Universe at the time when the main
progenitor mass equals the mass enclosed within the same radii.

The left-hand panels correspond to radii enclosing 1/4, 1/2 and
3/4 of the virial mass of the halo. The dots indicate individual
haloes coloured by halo mass, as shown in the colour bar at the top.
Boxes and whiskers trace the 10th, 25th, 75th and 90th percentiles

in bins of ρcrit. Note the tight but rather weak (and non-linear)
correlation between densities at these radii. This confirms our earlier
statement that ‘half-mass’ formation times are unreliable indicators
of halo characteristic density: haloes with very different z1/2 may
nevertheless have similar concentrations.

The right-hand panels of Fig. 3 show the same density correla-
tions, but measured at various multiples of r−2, the scale radius of
the mass profile at z = 0. The middle panel shows that the mean den-
sity within r−2, 〈ρ−2〉 = M−2/(4π/3)r3

−2 is directly proportional to
the critical density of the Universe at the time when the virial mass
of the main progenitor equals M−2. Intriguingly, this is also true
at r−2/2 (top-right panel) and at 2 × r−2 (bottom-right panel), al-
though with different proportionality constants (listed in the figure
legends).

This means that there is an intimate relation between the mass
profile of a halo and the shape of its MAH, in the sense that, once
the scale radius is specified, the MAH can be reconstructed from
the mass profile, and vice versa. Since mass profiles are nearly
self-similar when scaled to r−2, this implies that accretion histories
must also be approximately self-similar when scaled appropriately.
The MAH self-similarity has been previously discussed by van den
Bosch (2002), but its relation to the shape of the mass profile, as
highlighted here, has so far not been recognized.

4.3 NFW accretion histories and mass profiles

We explore further the relation between MAH and mass profile
by casting both in a way that simplifies their comparison, i.e. in
terms of mass versus density. In the case of the mass profile, this
is just the enclosed mass–mean inner density relation, M(〈ρ〉) (see
Section 3.1). For the MAH, this reduces to expressing the virial
mass of the main progenitor in terms of the critical density, rather
than the redshift, M(ρcrit(z)). In what follows, we shall scale all
masses to the virial mass of the halo at z = 0, M0; ρcrit(z) to the
value at present, ρ0; and 〈ρ〉 to 200 ρ0.

The top-left panel of Fig. 4 shows, in these scaled units, the av-
erage M(〈ρ〉) profile for haloes in three different narrow mass bins
(indicated by the grey vertical bars in the bottom panel of Fig. 2).
These mean profiles are computed by averaging halo masses, for
given 〈ρ〉, after scaling all individual haloes as indicated above. As
expected, each profile is well fitted by an NFW profile where the
concentration increases gradually with decreasing mass. The heavy
symbols on each profile indicate the value of M−2 and 〈ρ−2〉. The
top-right panel shows the same data, but scaled to these character-
istic masses and densities. Clearly, the three profiles follow closely
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The corresponding MAHs, computed as above by averaging
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In these scaled units, a single point can be used to specify the
‘concentration’ of an NFW profile, which is shown by the dashed
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MAHs: rescaled to their own characteristic density and mass they
all look alike and also follow closely the NFW shape (bottom-right
panel of Fig. 4). The MAHs and mass profiles of CDM haloes are
not only nearly self-similar: they both have similar shapes that may
be approximated very well by the NFW profile.

This implies that the concentration of the mass profile just reflects
the ‘concentration’ of the MAH. Indeed, assuming that the NFW
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Figure 1. Halo density profiles and accretion histories. Left-hand panel: median density profiles of MS-II relaxed haloes in the mass range 1.24 <

log M200/(1010 h−1 M") < 1.54 (corresponding to particle numbers in the range 2.5 × 104 < N200 < 5 × 104), selected according to their concentra-
tion (see boxes in the top panel of Fig. 2). Densities are shown scaled to ρ0, the critical density at z = 0, and weighted by r2 in order to enhance the dynamic
range of the plot. Radii are scaled to the virial radius, r200. The best-fitting Einasto profiles are shown by the thin solid curves, with parameters listed in the
legend. Dot–dashed curves indicate NFW profiles (whose shape is fixed in these units) matched at the scale radius, r−2, where the r2ρ profiles peak. Arrows
indicate the half-mass radius, r1/2. Right-hand panel: median MAHs of the same set of haloes chosen for the left-hand panel. Halo accretion history is defined
as the evolution of the mass of the main progenitor, expressed in units of the mass of the halo at z = 0. The heavy circles indicate the redshift, z−2, when the
progenitor’s mass equals the mass, M−2, enclosed within the scale radius at z = 0. The starred symbols indicate the half-mass formation redshift.

In the scaled units of Fig. 1 the scale radius, r−2, signals the
location of the maximum of each curve, and different concentrations
show as shifts in the position of the maxima, which are indicated
by large filled circles. In addition to their different concentrations,
the profiles differ as well in α, which increases with decreasing
concentration (see legends in Fig. 1). Arrows indicate the half-
mass radius of each profile. Dot–dashed curves show NFW profiles
(whose shape is fixed in this plot) with the same concentration as
the best Einasto fit (solid lines). The density profile curves more
gently than NFW for α ! 0.18 and less gradually than NFW for
α " 0.18, respectively.

The (median) MAHs corresponding to the same sets of haloes
are shown in the right-hand panel of Fig. 1. We define the MAH of
a halo as the evolution of the virial mass of the main progenitor,3

usually expressed as a function of the scalefactor a = 1/(1 + z),
and normalized to the present-day value, M0 = M200(z = 0). As ex-
pected, more concentrated haloes accrete a larger fraction of their
final mass earlier on. The filled stars indicate the ‘half-mass for-
mation redshift’, z1/2, whereas the filled circles indicate z−2, the
redshift when the mass of the main progenitor first reaches M−2,
the mass enclosed within r−2 at z = 0.

4 R ESULTS

4.1 The mass–concentration–shape relations

The top panel of Fig. 2 shows the mass–concentration relation for
our sample of relaxed haloes at z = 0. Concentrations are estimated
from Einasto fits, and are colour coded by the shape parameter, α,
as indicated by the colour bar. The open symbols track the median
concentrations as a function of mass. The thin solid lines trace the

3 The main progenitor of a given dark matter halo is found by tracing
backwards in time the most massive halo along the main branch of its
merger tree.

25th and 75th percentiles of the scatter at fixed mass. Different
symbols are used for the different MS runs, as specified in the
legend. Note the excellent agreement in the overlapping mass range
of each simulation, which indicates that our fitting procedure is
robust to the effects of numerical resolution.

The bottom panel of Fig. 2 shows the mass–α relation, coloured
this time by concentration. The trend is again consistent with earlier
work; the median values of α are fairly insensitive to halo mass,
except at the highest masses, where it increases slightly. The mass–
concentration–shape trends are consistent with earlier work; for
example, the dashed lines correspond to the fitting formulae pro-
posed by Gao et al. (2008) and reproduce the overall trends very
well.

Fig. 2 illustrates an interesting point already hinted at in Fig. 1:
the shape parameter seems to correlate with concentration at given
mass. Interestingly, haloes of average concentration have approx-
imately the same shape parameter (α ≈ 0.18, i.e. quite similar to
NFW), regardless of mass. Haloes with higher-than-average con-
centration have smaller values of α and vice versa. This suggests
that the same mechanism responsible, at given mass, for deviations
in concentration from the mean might also be behind the different
mass profile shapes at z = 0 parametrized by α. We explore this
possibility next.

4.2 Characteristic densities and assembly times

As pointed out by Navarro et al. (1997) and confirmed by subsequent
work (see, e.g. Jing 2000), the scatter in concentration is closely
related to the accretion history of a halo: the earlier (later) a halo is
assembled the higher (lower) its concentration.

This is clear from the assembly histories shown in Fig. 1, which
illustrate as well that defining ‘formation time’ in a way that corre-
lates strongly and unequivocally with concentration is not straight-
forward. For example, the often-used half-mass formation redshift,
z1/2, varies only weakly with c, making it an unreliable proxy for
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3. HALO MASS FUNCTION

3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn

dM
¼ f (#)

%̄m
M

d ln #%1

dM
: ð2Þ

In extended Press-Schechter theory, the overdensity at a location
in a linear density field follows a random walk with decreasing
smoothing scale. The function f (#) is the #-weighted distribution
of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
is expected to be universal to the changes in redshift and cos-
mology and is parameterized as

f (#) ¼ A
#

b

! "%a

þ1

# $
e%c=# 2

; ð3Þ

where

#2 ¼
Z

P(k)Ŵ (kR)k 2 dk; ð4Þ

P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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could also receive a contribution from unresolved Galactic DM subhalos [31, 32]. We will
focus mainly on limiting the extragalactic DM signal in this work, but comment carefully on
the possible size of Galactic contributions. A different approach to extract a DM signal from a
full sky analysis, which we will not follow, is to analyze the power spectrum of the gamma-ray
signal, which may contain identifiable signatures on different angular scales [33–37].

There are several important uncertainties inherently present when trying to constrain
DM properties from the type of analysis presented in [30]. The largest comes from the the-
oretical modeling of the expected DM annihilation luminosity. We use recently presented
results from the ‘Millennium II’ simulation of cosmic structure formation [38, 39], as well
as the approach in the Fermi-LAT pre-launch study [40], to calculate the DM contribution
to the IGRB signal. Another uncertainty stems from the contribution of more conventional,
astrophysical sources to the extragalactic gamma-ray signal, which is currently hard to quan-
tify. A large contribution is believed to originate from unresolved point sources, with the
most important potentially being unresolved blazars [41–45]. Other sources, such as ordinary
star forming galaxies [46, 47] and in particular starburst galaxies [48], as well as structure
shocks in clusters of galaxies [49–53], might also contribute (see, e.g., [54] for a short review).
The Fermi-LAT is expected to improve our knowledge of these sources and increase our un-
derstanding of the shape and normalization of their contribution to the IGRB in the near
future (for early results, see [55]). We address these background uncertainties by presenting
both very conservative and more theoretically-motivated limits on the DM contribution to
the IGRB signal.

The paper is organized as follows. In section 2 we describe the calculation of the isotropic
gamma-ray flux from cosmological distant DM annihilations, and comment on the potential
contribution from Galactic DM. In section 3 we motivate and describe the particle physics
DM models we constrain. Section 4 contains a description of our procedure for obtaining the
limits, and in section 5 we present and discuss our results. Section 6 contains our summary.

2 Dark matter induced isotropic gamma-ray flux

2.1 Extragalactic

There are several ingredients necessary to calculate the flux of gamma-rays from cosmological
DM annihilation. In addition to the gamma-ray yield per annihilation, assumptions need to
be made on the distribution and evolution of DM halos in the Universe. Also, for high-energy
gamma-rays, the effects of intergalactic absorption become important and has to be taken
into account. The flux from DM induced extragalactic photons can be expressed as, [23],
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where c is the speed of light, H0 the Hubble constant equal to 100×h km s−1/Mpc, τ(z, E0) the
optical depth, �σv� the sample averaged DM annihilation cross section times relative velocity
(hereinafter referred to as cross section), dNγ/dE the gamma-ray spectrum at emission,
mDM the DM mass, and ρ̄0 its average density today, while h(z) =

�
ΩM (1 + z)3 + ΩΛ

parameterizes the energy content of the Universe. The quantity ∆2(z), as defined in [23],
describes the enhancement of the annihilation signal arising due to the clustering of DM into
halos and subhalos (relative to a uniform DM distribution in the Universe). For the ΩM ,
ΩΛ, and h we will consistently adopt the values used in [23] and [38]; which will be the two
references we follow in order to derive ∆2(z).
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Figure 2. Mass dependence of the best-fitting Einasto parameters for all
haloes in our sample at z = 0. Only relaxed haloes with more than 5000
particles within the virial radius are considered. The top and bottom panels
show, respectively, the concentration, c = r200/r−2, and shape parameter, α,
as a function of halo virial mass. Individual points are coloured according to
the third parameter (see colour bar on the right of each panel). The connected
symbols trace the median values for each Millennium Simulation (see legend
in the top panel); thin solid lines delineate the 25 to 75 percentile range.
The dashed curves indicate the fitting formulae proposed by Gao et al.
(2008). For clarity only 10 000 haloes per simulation are shown in this
figure. Haloes shown in grey are systems where the best-fitting scale radius
is smaller than the convergence radius; these fits are deemed unreliable
and the corresponding haloes are not included in the analysis. The grey
vertical bars highlight three different mass bins used to explore parameter
variations at fixed halo mass (see Sections 4.3 and 4.4). The small boxes
indicate haloes in each of those bins with average, higher-than-average and
lower-than-average values of α (bottom panel) or of the concentration (top
panel).

concentration (Neto et al. 2007). An ideal definition of formation
time would result in a natural correspondence between the charac-
teristic density of a halo at z = 0 and the density of the Universe at
the time of its assembly.

We explore two possibilities in Fig 3. Here, we show the mean
density enclosed within various characteristic radii at z = 0 ver-
sus the critical density of the Universe at the time when the main
progenitor mass equals the mass enclosed within the same radii.

The left-hand panels correspond to radii enclosing 1/4, 1/2 and
3/4 of the virial mass of the halo. The dots indicate individual
haloes coloured by halo mass, as shown in the colour bar at the top.
Boxes and whiskers trace the 10th, 25th, 75th and 90th percentiles

in bins of ρcrit. Note the tight but rather weak (and non-linear)
correlation between densities at these radii. This confirms our earlier
statement that ‘half-mass’ formation times are unreliable indicators
of halo characteristic density: haloes with very different z1/2 may
nevertheless have similar concentrations.

The right-hand panels of Fig. 3 show the same density correla-
tions, but measured at various multiples of r−2, the scale radius of
the mass profile at z = 0. The middle panel shows that the mean den-
sity within r−2, 〈ρ−2〉 = M−2/(4π/3)r3

−2 is directly proportional to
the critical density of the Universe at the time when the virial mass
of the main progenitor equals M−2. Intriguingly, this is also true
at r−2/2 (top-right panel) and at 2 × r−2 (bottom-right panel), al-
though with different proportionality constants (listed in the figure
legends).

This means that there is an intimate relation between the mass
profile of a halo and the shape of its MAH, in the sense that, once
the scale radius is specified, the MAH can be reconstructed from
the mass profile, and vice versa. Since mass profiles are nearly
self-similar when scaled to r−2, this implies that accretion histories
must also be approximately self-similar when scaled appropriately.
The MAH self-similarity has been previously discussed by van den
Bosch (2002), but its relation to the shape of the mass profile, as
highlighted here, has so far not been recognized.

4.3 NFW accretion histories and mass profiles

We explore further the relation between MAH and mass profile
by casting both in a way that simplifies their comparison, i.e. in
terms of mass versus density. In the case of the mass profile, this
is just the enclosed mass–mean inner density relation, M(〈ρ〉) (see
Section 3.1). For the MAH, this reduces to expressing the virial
mass of the main progenitor in terms of the critical density, rather
than the redshift, M(ρcrit(z)). In what follows, we shall scale all
masses to the virial mass of the halo at z = 0, M0; ρcrit(z) to the
value at present, ρ0; and 〈ρ〉 to 200 ρ0.

The top-left panel of Fig. 4 shows, in these scaled units, the av-
erage M(〈ρ〉) profile for haloes in three different narrow mass bins
(indicated by the grey vertical bars in the bottom panel of Fig. 2).
These mean profiles are computed by averaging halo masses, for
given 〈ρ〉, after scaling all individual haloes as indicated above. As
expected, each profile is well fitted by an NFW profile where the
concentration increases gradually with decreasing mass. The heavy
symbols on each profile indicate the value of M−2 and 〈ρ−2〉. The
top-right panel shows the same data, but scaled to these character-
istic masses and densities. Clearly, the three profiles follow closely
the same NFW shape, which is fixed in these units.

The corresponding MAHs, computed as above by averaging
accretion histories of scaled individual haloes, are shown in the
bottom-left panel of Fig. 4. The heavy symbols on each profile
again indicate the value of M−2 (as in the above panel), as well as
ρcrit(z−2) = 776 〈ρ−2〉, computed using the relation shown in the
middle-right panel of Fig. 3.

In these scaled units, a single point can be used to specify the
‘concentration’ of an NFW profile, which is shown by the dashed
curves. Interestingly, these provide excellent descriptions of the
MAHs: rescaled to their own characteristic density and mass they
all look alike and also follow closely the NFW shape (bottom-right
panel of Fig. 4). The MAHs and mass profiles of CDM haloes are
not only nearly self-similar: they both have similar shapes that may
be approximated very well by the NFW profile.

This implies that the concentration of the mass profile just reflects
the ‘concentration’ of the MAH. Indeed, assuming that the NFW
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Figure 1. Halo density profiles and accretion histories. Left-hand panel: median density profiles of MS-II relaxed haloes in the mass range 1.24 <

log M200/(1010 h−1 M") < 1.54 (corresponding to particle numbers in the range 2.5 × 104 < N200 < 5 × 104), selected according to their concentra-
tion (see boxes in the top panel of Fig. 2). Densities are shown scaled to ρ0, the critical density at z = 0, and weighted by r2 in order to enhance the dynamic
range of the plot. Radii are scaled to the virial radius, r200. The best-fitting Einasto profiles are shown by the thin solid curves, with parameters listed in the
legend. Dot–dashed curves indicate NFW profiles (whose shape is fixed in these units) matched at the scale radius, r−2, where the r2ρ profiles peak. Arrows
indicate the half-mass radius, r1/2. Right-hand panel: median MAHs of the same set of haloes chosen for the left-hand panel. Halo accretion history is defined
as the evolution of the mass of the main progenitor, expressed in units of the mass of the halo at z = 0. The heavy circles indicate the redshift, z−2, when the
progenitor’s mass equals the mass, M−2, enclosed within the scale radius at z = 0. The starred symbols indicate the half-mass formation redshift.

In the scaled units of Fig. 1 the scale radius, r−2, signals the
location of the maximum of each curve, and different concentrations
show as shifts in the position of the maxima, which are indicated
by large filled circles. In addition to their different concentrations,
the profiles differ as well in α, which increases with decreasing
concentration (see legends in Fig. 1). Arrows indicate the half-
mass radius of each profile. Dot–dashed curves show NFW profiles
(whose shape is fixed in this plot) with the same concentration as
the best Einasto fit (solid lines). The density profile curves more
gently than NFW for α ! 0.18 and less gradually than NFW for
α " 0.18, respectively.

The (median) MAHs corresponding to the same sets of haloes
are shown in the right-hand panel of Fig. 1. We define the MAH of
a halo as the evolution of the virial mass of the main progenitor,3

usually expressed as a function of the scalefactor a = 1/(1 + z),
and normalized to the present-day value, M0 = M200(z = 0). As ex-
pected, more concentrated haloes accrete a larger fraction of their
final mass earlier on. The filled stars indicate the ‘half-mass for-
mation redshift’, z1/2, whereas the filled circles indicate z−2, the
redshift when the mass of the main progenitor first reaches M−2,
the mass enclosed within r−2 at z = 0.

4 R ESULTS

4.1 The mass–concentration–shape relations

The top panel of Fig. 2 shows the mass–concentration relation for
our sample of relaxed haloes at z = 0. Concentrations are estimated
from Einasto fits, and are colour coded by the shape parameter, α,
as indicated by the colour bar. The open symbols track the median
concentrations as a function of mass. The thin solid lines trace the

3 The main progenitor of a given dark matter halo is found by tracing
backwards in time the most massive halo along the main branch of its
merger tree.

25th and 75th percentiles of the scatter at fixed mass. Different
symbols are used for the different MS runs, as specified in the
legend. Note the excellent agreement in the overlapping mass range
of each simulation, which indicates that our fitting procedure is
robust to the effects of numerical resolution.

The bottom panel of Fig. 2 shows the mass–α relation, coloured
this time by concentration. The trend is again consistent with earlier
work; the median values of α are fairly insensitive to halo mass,
except at the highest masses, where it increases slightly. The mass–
concentration–shape trends are consistent with earlier work; for
example, the dashed lines correspond to the fitting formulae pro-
posed by Gao et al. (2008) and reproduce the overall trends very
well.

Fig. 2 illustrates an interesting point already hinted at in Fig. 1:
the shape parameter seems to correlate with concentration at given
mass. Interestingly, haloes of average concentration have approx-
imately the same shape parameter (α ≈ 0.18, i.e. quite similar to
NFW), regardless of mass. Haloes with higher-than-average con-
centration have smaller values of α and vice versa. This suggests
that the same mechanism responsible, at given mass, for deviations
in concentration from the mean might also be behind the different
mass profile shapes at z = 0 parametrized by α. We explore this
possibility next.

4.2 Characteristic densities and assembly times

As pointed out by Navarro et al. (1997) and confirmed by subsequent
work (see, e.g. Jing 2000), the scatter in concentration is closely
related to the accretion history of a halo: the earlier (later) a halo is
assembled the higher (lower) its concentration.

This is clear from the assembly histories shown in Fig. 1, which
illustrate as well that defining ‘formation time’ in a way that corre-
lates strongly and unequivocally with concentration is not straight-
forward. For example, the often-used half-mass formation redshift,
z1/2, varies only weakly with c, making it an unreliable proxy for
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3. HALO MASS FUNCTION

3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn

dM
¼ f (#)

%̄m
M

d ln #%1

dM
: ð2Þ

In extended Press-Schechter theory, the overdensity at a location
in a linear density field follows a random walk with decreasing
smoothing scale. The function f (#) is the #-weighted distribution
of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
is expected to be universal to the changes in redshift and cos-
mology and is parameterized as

f (#) ¼ A
#

b

! "%a

þ1

# $
e%c=# 2

; ð3Þ

where

#2 ¼
Z

P(k)Ŵ (kR)k 2 dk; ð4Þ

P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn

dM
¼ f (#)

%̄m
M

d ln #%1

dM
: ð2Þ

In extended Press-Schechter theory, the overdensity at a location
in a linear density field follows a random walk with decreasing
smoothing scale. The function f (#) is the #-weighted distribution
of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
is expected to be universal to the changes in redshift and cos-
mology and is parameterized as

f (#) ¼ A
#

b

! "%a

þ1

# $
e%c=# 2

; ð3Þ

where

#2 ¼
Z

P(k)Ŵ (kR)k 2 dk; ð4Þ

P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with !,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
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creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
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results at z ¼ 0.
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an extrapolation of more 
than 10 orders of magnitude!

10−9, 10−6 h−1 M⊙ ?

Ingredients:
1. Halos mass function
2. Halos density profile (NFW, Einasto, etc ...)
3. Halos concentration 
+ all of the above for subhalos 

> 106 h−1 M⊙

ρ(z, Ω̂) = ρ̄(z)∆(z, Ω̂)

(Sefusatti, DSU13)
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• Strength of the extragalactic signal:

dφ

dE0
=

c �σv�(ΩDMρc)2

8πm
2
DM

�
dz

e
−τ(E0,z)(1 + z)

3ζ(z)

H(z)

dN

dE

���
E=E0(1+z)

Uncertainty in the signal translates to the uncertainty on constraints of DM cross section.

Isotropic emission: DM signal

The ‘flux multiplier’ parametrizes DM clustering at all scales and is the main source of 
uncertainty. The smallest predicted halo scale ~10-6Msol << what was traditionally 
measured in simulations or from observations.
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2 Theoretical predictions for cosmological and89

isotropic dark matter annihilation signals90

The extragalactic gamma-ray flux dφ/dE produced in annihilations of DM particles with

mass mDM and self-annihilation cross section �σv�, over cosmological redshifts z is given

by
1
[14, 15, 16]:

dφ

dE0
=

c �σv�(ΩDMρc)2

8πm
2
DM

�
dz

e
−τ(E0,z)(1 + z)

3ζ(z)

H(z)

dN

dE

���
E=E0(1+z)

(1)

where c is the speed of light, ΩDM is the current DM abundance relative to the critical91

density ρc, H(z) is the Hubble parameter or expansion rate, and dN/dE is the spectrum of92

photons per DM annihilation. The function τ(E, z) parametrizes the absorption of photons93

due to the extragalactic background light. The flux multiplier ζ(z), which is related to the94

variance of DM density fluctuations in the Universe and measures the amount of DM95

clustering at each given redshift, is the most uncertain quantity in this problem. It can be96

expressed both in real space, making use of the so called Halo Model (HM) approach [17],97

and in the Fourier space by means of the Power Spectrum (PS) approach [18].98

In the HM framework, ζ(z) is calculated by summing up the contributions to the

annihilation signal from individual halos of mass M from all cosmic redshifts, �F (M, z)�,
and for all halo masses, i.e.:

ζ(z) =
1

ΩDMρc

�

Mmin

dM
dn

dM
M

∆v(z)

3
�F (M, z)� , (2)

where ∆v(z) is the mean halo over-density with respect to the mean density of the Universe

which is used to define the virial radius of the halo, Rv, at every redshift, and
dn
dM is the

halo mass function. The latter is normalized by imposing that all mass in the Universe

resides inside halos (see [14] for more details). �F (M, z)� in turn depends on the DM halo
density profile and the halo size. Halo density profiles are measured in N-body cosmological

simulations, with the most recent results favoring cuspy NFW [19] and Einasto halos

[20, 21], while some astrophysical observations favor cored halos, e.g., Burkert density

profiles [22]. The density profile κ can be easily expressed in terms of a dimensionless

variable x = r/rs, rs being the radius at which the effective logarithmic slope of the

profile is −2, or scale radius. In this prescription, Rv is usually parametrized by the halo
concentration cv = Rv/rs and the function F can be written as follows:

F (M, z, cv) ≡ c
3
v(M, z)

� cv
0 dx x

2κ2
(x)

�� cv
0 dx x2 κ(x)

�2 , (3)

More realistically F is an average over the probability distribution of the relevant param-99

eters (most notably cv). Note that the above expression depends on a third power of the100

concentration parameter. It is measured in simulations that the halo mass function and101

halo concentration are inversely proportional to halo mass and consequently the flux mul-102

tiplier ζ(z) given by Eq. (2) turns out to be dominated by small mass halos (as we will103

discuss in Section 2.1). It was observed in simulations that halos typically contain pop-104

ulations of subhalos, possibly characterized by different mean values of parameters. The105

signals from subhalos is typically included by expanding Eq. 2, see [14].106

1We assume here that thermally averaged annihilation cross section is velocity independent and that
DM are self conjugated particles.
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The flattening of the concentration-mass relation and implications for the boosts 3
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Figure 1. Top panel: Current knowledge of the median concentration-mass relation at z = 0 for all halo masses available in the
literature from different simulation data sets, i.e. from the smallest Earth-like DM microhalos predicted to exist in the CDM universe
(∼10−6h−1M"), up to the largest cluster-size halos (∼1015h−1M"). At the high-mass end, the results from Bolshoi (blue circles) and
MultiDark (purple circles) are shown. The two empty black squares at ∼109h−1M" and the three filled black squares at ∼108h−1M"

were derived from Ishiyama et al. (2013) and Coĺın et al. (2004), respectively. Another individual ”Draco-like 108h−1M" halo is also
plotted as a green pentagon (Moore et al. 2001). A couple hundreds dwarf halos with masses ∼106 – 109 h−1M" (red triangles) were
extracted from the VL-II data (Diemand et al. 2008). At the low-mass end, we show the microhalo results taken from Diemand et al.
(2005) (orange filled diamonds) and Anderhalden & Diemand (2013) (orange empty diamonds) for individual halos, as well as those
recently reported by Ishiyama (2014) for a sample of thousands of microhalos (empty black triangles). We also provide the upper limit
to halo concentrations obtained by Diemand et al. (2005) in the range 10−6 – 10 h−1M" (pink dotted line). The P12 concentration
model (Prada et al. 2012) is shown with a solid line. The shaded gray region represents a typical 1σ concentration scatter of 0.14 dex
centered on the P12 model. The dashed curve represents the updated M08 version (Macciò, Dutton, & van den Bosch 2008) of the
B01 toy concentration model (Bullock et al. 2001). All concentration values but those from MultiDark, Bolshoi and VL-II, have been
extrapolated down to z = 0 by means of the (1 + z) correction factor. Bottom panel: Same data set but displayed in the c – σ−1 plane,
which allows for a more detailed analysis and comparison between simulations and model in terms of the amplitude of linear density
fluctuations. The concentration values shown are those in the original set of simulations at the corresponding redshift where they were
measured, while the σ(M) values are the ones that halos would have at present time for those values of the concentration, see text for
further details. Solid (dashed) line refers to the σ(M) range in which the P12 model was (not) tested against simulations.
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Use Two approaches 
• Flux multiplier calculated in the halo model (‘real space’ calculation; input: DM 

density distribution, concentration, mass number etc) 
• improvement: use the most up to date measurement of the ‘concentration’ parameter 

(measured now down to 10-6Msol in dedicated simulations) 
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[Sanchez-Conde&Prada, MNRAS 2014]

Isotropic emission: DM signal

f (dn/dM, c3, ...)
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!"#$%&'!$()%*+&,!!%",(-&As noted in [23] the flux multiplier can also be expressed directly in terms of the non-
linear matter power spectrum PNL (the two-point function of the Fourier transform of the
matter density field):

ζ(z) ≡ �δ2(z)� =
� kmax d k

k

k3PNL(k, z)

2π2
≡

� kmax d k

k
∆NL(k, z), (4)

where ∆NL(k, z) = k3PNL(k)/(2π2) is the dimensionless nonlinear power spectrum and107

kmax(z) is the scale of the smallest structures which still significantly contribute the cos-108

mological annihilation signal. Loosely speaking, M = 4/3 πρh (π/k)3 with ρh the charac-109

teristic density of the DM halo. Therefore kmax is the PS correspondence to minimal halo110

mass Mmin in Eq. (2) in a HM prescription.111

The extrapolation to mass or k scales beyond the resolution of N-body simulations is112

the source of the biggest uncertainty in the prediction of the extragalactic signal of DM113

annihilation, since the smallest scales expected for the WIMP models are far from being114

probed either by astrophysical observations or simulations. Thus, the way these extrapo-115

lations to the smallest masses are performed can lead to completely different results of the116

relevant quantities. Typical expectations for the minimum halo masses in WIMP models117

are in the range Mmin ∈ [10−9, 10−4]M⊙ (see [24, 25, 26] and refs. therein), while we only118

have observational evidence of structures down to 107 M⊙ [27] implying that extrapolations119

of at least >∼ 10 orders of magnitude in halo mass (or >∼ 3 orders of magnitude in k) are120

probably needed.121

Both ways of expressing ζ, (2) and (4) have their advantages and disadvantages. While122

(2) is given in real space and thus deals with ‘intuitive’ quantities, it depends to a large123

extent on several poorly constrained parameters, most notably concentration and halo mass124

function. This is particularly true for the smallest halos, which, as said, are expected to125

dominate. The same is applicable to the subhalo population, whose internal properties126

and abundance are even less understood. On the other hand, (4) depends only on one127

quantity directly measured in simulations2 and can be extrapolated based on simple scale128

invariant arguments, but lacks the intuitive understanding of breaking the structure down129

to individual halos and subhalos, relevant e.g. when comparing the expected signals from130

Milky Way substructures with the total cosmological one.131

In this work, we will use both of these two approaches in parallel: the HM to define132

our benchmark model following simple but well motivated arguments for the choice of the133

relevant ingredients, and the PS framework to calculate the associated uncertainty due134

to extrapolation to small (unresolved) scales (since in this case the extrapolation simply135

affects one quantity which is unambiguously defined and measured in simulations).136

2It is measured using only a matter density map, without invoking concept of halos and without relying
on standard halo finders.
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Figure 4. Same as Fig. 3 but for the limits defined in equations (8) and (10).

their properties. In fact, this is true as well for the typical ingredients
required by the HM approach, such as the mass function, the halo
profile, etc. However, the dependence on redshift of the uncertainty
in the determination of such quantities is not accounted for (instan-
taneous virialization and convergence to asymptotic universal halo
profile are for example assumed). Note however how the minimum
condition enforced via equation (6) prevents the error to grow too
much, with a moderating effect that is more pronounced at high z

and high k.
Figs 3 and 4 show as well, for comparison, the extrapolation of

the HF and RHF fitting formulas, together with the corrected ver-
sion of equation (2) enforcing the stable clustering prediction. Both
the extrapolated values of HF and RHF exceed the bounds derived
from the simulations. This is not surprising since, as mentioned
before, the large-k asymptotic behaviour has not been considered
in the fitting procedure. On the other hand, the stable clustering
assumption provides a ‘best guess’ extrapolation that nicely falls
within the estimated limits, both from MS and MSII, for all red-
shifts considered, even in the case of the tighter aggressive limits
of equations (8) and (10). This is evident as well confronting the
values obtained for ζ (z) with the allowed interval as reported in
Table 1. It is important to note that at the highest k resolved by the

MSII simulation, the MSII power spectrum does fall within the esti-
mated uncertainty band (blue/dark shadowed region) deduced from
MS data both in Figs 3 and 4. This is a further consistency check of
the physically reasonable behaviour of the uncertainty extrapolation
schemes proposed.

These results are visualized as well in Fig. 5 where the uncer-
tainty on the dimensionless combination (1 + z)3 ζ (z) H0/ H(z)
estimated from the extrapolated MS data (blue regions) and MSII
data (red regions) is shown as a function of redshift. Black curves
correspond to the RHF+SC prediction. Two different values for
the integration cut-off are considered, kmax = 106 and 108 h Mpc−1

(continuous and dashed curves, respectively). All extrapolations
assume k" = k1 per cent. The left-hand panel assumes the more
conservative bounds of equations (5) and (6) while the right-hand
panel assumes equations (8) and (10). Clearly, the lower bounds
are not affected much by the two orders of magnitude difference in
the cut-off assumed here, while the upper bounds change by up to
about a factor of 10, depending on the redshift, in the conservative
extrapolation case. Notice that we limit the plots to the four outputs
available, z = 0, 1, 2 and 6 and that we have no upper bounds
estimated from MS at redshift z = 6, so we stop at z = 2. The es-
timated uncertainties obviously depend as well on the choice of k",
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Use Two approaches 
• the uncertainty on flux multiplier calculated using the matter power spectrum 

measurement (two point function of DM density field, in Fourier space) - need to 
extrapolate only one quantity directly measured in simulations.  
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where ∆NL(k, z) = k3PNL(k)/(2π2) is the dimensionless nonlinear power spectrum and107

kmax(z) is the scale of the smallest structures which still significantly contribute the cos-108

mological annihilation signal. Loosely speaking, M = 4/3 πρh (π/k)3 with ρh the charac-109

teristic density of the DM halo. Therefore kmax is the PS correspondence to minimal halo110

mass Mmin in Eq. (2) in a HM prescription.111

The extrapolation to mass or k scales beyond the resolution of N-body simulations is112

the source of the biggest uncertainty in the prediction of the extragalactic signal of DM113

annihilation, since the smallest scales expected for the WIMP models are far from being114

probed either by astrophysical observations or simulations. Thus, the way these extrapo-115

lations to the smallest masses are performed can lead to completely different results of the116

relevant quantities. Typical expectations for the minimum halo masses in WIMP models117

are in the range Mmin ∈ [10−9, 10−4]M⊙ (see [24, 25, 26] and refs. therein), while we only118

have observational evidence of structures down to 107 M⊙ [27] implying that extrapolations119

of at least >∼ 10 orders of magnitude in halo mass (or >∼ 3 orders of magnitude in k) are120

probably needed.121

Both ways of expressing ζ, (2) and (4) have their advantages and disadvantages. While122

(2) is given in real space and thus deals with ‘intuitive’ quantities, it depends to a large123

extent on several poorly constrained parameters, most notably concentration and halo mass124

function. This is particularly true for the smallest halos, which, as said, are expected to125

dominate. The same is applicable to the subhalo population, whose internal properties126

and abundance are even less understood. On the other hand, (4) depends only on one127

quantity directly measured in simulations2 and can be extrapolated based on simple scale128

invariant arguments, but lacks the intuitive understanding of breaking the structure down129

to individual halos and subhalos, relevant e.g. when comparing the expected signals from130

Milky Way substructures with the total cosmological one.131

In this work, we will use both of these two approaches in parallel: the HM to define132

our benchmark model following simple but well motivated arguments for the choice of the133

relevant ingredients, and the PS framework to calculate the associated uncertainty due134

to extrapolation to small (unresolved) scales (since in this case the extrapolation simply135

affects one quantity which is unambiguously defined and measured in simulations).136

2It is measured using only a matter density map, without invoking concept of halos and without relying
on standard halo finders.
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Figure 4. Same as Fig. 3 but for the limits defined in equations (8) and (10).

their properties. In fact, this is true as well for the typical ingredients
required by the HM approach, such as the mass function, the halo
profile, etc. However, the dependence on redshift of the uncertainty
in the determination of such quantities is not accounted for (instan-
taneous virialization and convergence to asymptotic universal halo
profile are for example assumed). Note however how the minimum
condition enforced via equation (6) prevents the error to grow too
much, with a moderating effect that is more pronounced at high z

and high k.
Figs 3 and 4 show as well, for comparison, the extrapolation of

the HF and RHF fitting formulas, together with the corrected ver-
sion of equation (2) enforcing the stable clustering prediction. Both
the extrapolated values of HF and RHF exceed the bounds derived
from the simulations. This is not surprising since, as mentioned
before, the large-k asymptotic behaviour has not been considered
in the fitting procedure. On the other hand, the stable clustering
assumption provides a ‘best guess’ extrapolation that nicely falls
within the estimated limits, both from MS and MSII, for all red-
shifts considered, even in the case of the tighter aggressive limits
of equations (8) and (10). This is evident as well confronting the
values obtained for ζ (z) with the allowed interval as reported in
Table 1. It is important to note that at the highest k resolved by the

MSII simulation, the MSII power spectrum does fall within the esti-
mated uncertainty band (blue/dark shadowed region) deduced from
MS data both in Figs 3 and 4. This is a further consistency check of
the physically reasonable behaviour of the uncertainty extrapolation
schemes proposed.

These results are visualized as well in Fig. 5 where the uncer-
tainty on the dimensionless combination (1 + z)3 ζ (z) H0/ H(z)
estimated from the extrapolated MS data (blue regions) and MSII
data (red regions) is shown as a function of redshift. Black curves
correspond to the RHF+SC prediction. Two different values for
the integration cut-off are considered, kmax = 106 and 108 h Mpc−1

(continuous and dashed curves, respectively). All extrapolations
assume k" = k1 per cent. The left-hand panel assumes the more
conservative bounds of equations (5) and (6) while the right-hand
panel assumes equations (8) and (10). Clearly, the lower bounds
are not affected much by the two orders of magnitude difference in
the cut-off assumed here, while the upper bounds change by up to
about a factor of 10, depending on the redshift, in the conservative
extrapolation case. Notice that we limit the plots to the four outputs
available, z = 0, 1, 2 and 6 and that we have no upper bounds
estimated from MS at redshift z = 6, so we stop at z = 2. The es-
timated uncertainties obviously depend as well on the choice of k",
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linear matter power spectrum PNL (the two-point function of the Fourier transform of the
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ζ(z) ≡ �δ2(z)� =
� kmax d k

k

k3PNL(k, z)

2π2
≡

� kmax d k

k
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where ∆NL(k, z) = k3PNL(k)/(2π2) is the dimensionless nonlinear power spectrum and107

kmax(z) is the scale of the smallest structures which still significantly contribute the cos-108

mological annihilation signal. Loosely speaking, M = 4/3 πρh (π/k)3 with ρh the charac-109

teristic density of the DM halo. Therefore kmax is the PS correspondence to minimal halo110

mass Mmin in Eq. (2) in a HM prescription.111

The extrapolation to mass or k scales beyond the resolution of N-body simulations is112

the source of the biggest uncertainty in the prediction of the extragalactic signal of DM113

annihilation, since the smallest scales expected for the WIMP models are far from being114

probed either by astrophysical observations or simulations. Thus, the way these extrapo-115

lations to the smallest masses are performed can lead to completely different results of the116

relevant quantities. Typical expectations for the minimum halo masses in WIMP models117

are in the range Mmin ∈ [10−9, 10−4]M⊙ (see [24, 25, 26] and refs. therein), while we only118

have observational evidence of structures down to 107 M⊙ [27] implying that extrapolations119

of at least >∼ 10 orders of magnitude in halo mass (or >∼ 3 orders of magnitude in k) are120

probably needed.121

Both ways of expressing ζ, (2) and (4) have their advantages and disadvantages. While122

(2) is given in real space and thus deals with ‘intuitive’ quantities, it depends to a large123

extent on several poorly constrained parameters, most notably concentration and halo mass124

function. This is particularly true for the smallest halos, which, as said, are expected to125

dominate. The same is applicable to the subhalo population, whose internal properties126

and abundance are even less understood. On the other hand, (4) depends only on one127

quantity directly measured in simulations2 and can be extrapolated based on simple scale128

invariant arguments, but lacks the intuitive understanding of breaking the structure down129

to individual halos and subhalos, relevant e.g. when comparing the expected signals from130

Milky Way substructures with the total cosmological one.131

In this work, we will use both of these two approaches in parallel: the HM to define132

our benchmark model following simple but well motivated arguments for the choice of the133

relevant ingredients, and the PS framework to calculate the associated uncertainty due134

to extrapolation to small (unresolved) scales (since in this case the extrapolation simply135

affects one quantity which is unambiguously defined and measured in simulations).136

2It is measured using only a matter density map, without invoking concept of halos and without relying
on standard halo finders.
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Figure 4. Same as Fig. 3 but for the limits defined in equations (8) and (10).

their properties. In fact, this is true as well for the typical ingredients
required by the HM approach, such as the mass function, the halo
profile, etc. However, the dependence on redshift of the uncertainty
in the determination of such quantities is not accounted for (instan-
taneous virialization and convergence to asymptotic universal halo
profile are for example assumed). Note however how the minimum
condition enforced via equation (6) prevents the error to grow too
much, with a moderating effect that is more pronounced at high z

and high k.
Figs 3 and 4 show as well, for comparison, the extrapolation of

the HF and RHF fitting formulas, together with the corrected ver-
sion of equation (2) enforcing the stable clustering prediction. Both
the extrapolated values of HF and RHF exceed the bounds derived
from the simulations. This is not surprising since, as mentioned
before, the large-k asymptotic behaviour has not been considered
in the fitting procedure. On the other hand, the stable clustering
assumption provides a ‘best guess’ extrapolation that nicely falls
within the estimated limits, both from MS and MSII, for all red-
shifts considered, even in the case of the tighter aggressive limits
of equations (8) and (10). This is evident as well confronting the
values obtained for ζ (z) with the allowed interval as reported in
Table 1. It is important to note that at the highest k resolved by the

MSII simulation, the MSII power spectrum does fall within the esti-
mated uncertainty band (blue/dark shadowed region) deduced from
MS data both in Figs 3 and 4. This is a further consistency check of
the physically reasonable behaviour of the uncertainty extrapolation
schemes proposed.

These results are visualized as well in Fig. 5 where the uncer-
tainty on the dimensionless combination (1 + z)3 ζ (z) H0/ H(z)
estimated from the extrapolated MS data (blue regions) and MSII
data (red regions) is shown as a function of redshift. Black curves
correspond to the RHF+SC prediction. Two different values for
the integration cut-off are considered, kmax = 106 and 108 h Mpc−1

(continuous and dashed curves, respectively). All extrapolations
assume k" = k1 per cent. The left-hand panel assumes the more
conservative bounds of equations (5) and (6) while the right-hand
panel assumes equations (8) and (10). Clearly, the lower bounds
are not affected much by the two orders of magnitude difference in
the cut-off assumed here, while the upper bounds change by up to
about a factor of 10, depending on the redshift, in the conservative
extrapolation case. Notice that we limit the plots to the four outputs
available, z = 0, 1, 2 and 6 and that we have no upper bounds
estimated from MS at redshift z = 6, so we stop at z = 2. The es-
timated uncertainties obviously depend as well on the choice of k",

MNRAS 441, 1861–1878 (2014)

 at Stanford U
niversity on June 3, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

$%#&'((')#*%&+,-../0!12#)3/43#+,%,#.3%#
5/((%6/+7#,/7+(-./'6,#85*#-69#5*:;;<=##
#
>%,+(.,#,4-(%9#.'#?(-64@#4',7'('AB=#
#
CD.E-F'(-./'6#.'#(')#7-,,%,#)/.3#5*:;;=#
#
*+G,.E+4.+E%#6-.+E-((B#-44'+6.%9#&'E=#

FLUX 
MULTIPLIER 

Integral over the non-linear 
matter power spectrum, PNL 

*%&+,-../2#H-3-E/I-,#%.#-(=#8JK!1<#

Adimensional PNL  

+,.&/012345631758&15&19/&65:/;1&;<36/;&

+=>&/012345631758&15&19/&65:/;1&;<36/;&

!>?&7;&@/3;A2/B&78&;7@A631758;C&

Use Two approaches 
• the uncertainty on flux multiplier calculated using the matter power spectrum 

measurement (two point function of DM density field, in Fourier space) - need to 
extrapolate only one quantity directly measured in simulations.  
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Flux multiplier vs red shiftpower spectrum vs scale

• uncertainty reduced from 3 orders of magnitude in older works to <~20.
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consistently as in the HM or ii) the ‘MINminal’ contribution

PS-max

PS-min

[Sefusatti+, MNRAS 2014]

!"#

!"#$%&'!$()%*+&,!!%",(-&As noted in [23] the flux multiplier can also be expressed directly in terms of the non-
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where ∆NL(k, z) = k3PNL(k)/(2π2) is the dimensionless nonlinear power spectrum and107

kmax(z) is the scale of the smallest structures which still significantly contribute the cos-108

mological annihilation signal. Loosely speaking, M = 4/3 πρh (π/k)3 with ρh the charac-109

teristic density of the DM halo. Therefore kmax is the PS correspondence to minimal halo110

mass Mmin in Eq. (2) in a HM prescription.111

The extrapolation to mass or k scales beyond the resolution of N-body simulations is112

the source of the biggest uncertainty in the prediction of the extragalactic signal of DM113

annihilation, since the smallest scales expected for the WIMP models are far from being114

probed either by astrophysical observations or simulations. Thus, the way these extrapo-115

lations to the smallest masses are performed can lead to completely different results of the116

relevant quantities. Typical expectations for the minimum halo masses in WIMP models117

are in the range Mmin ∈ [10−9, 10−4]M⊙ (see [24, 25, 26] and refs. therein), while we only118

have observational evidence of structures down to 107 M⊙ [27] implying that extrapolations119

of at least >∼ 10 orders of magnitude in halo mass (or >∼ 3 orders of magnitude in k) are120

probably needed.121

Both ways of expressing ζ, (2) and (4) have their advantages and disadvantages. While122

(2) is given in real space and thus deals with ‘intuitive’ quantities, it depends to a large123

extent on several poorly constrained parameters, most notably concentration and halo mass124

function. This is particularly true for the smallest halos, which, as said, are expected to125

dominate. The same is applicable to the subhalo population, whose internal properties126

and abundance are even less understood. On the other hand, (4) depends only on one127

quantity directly measured in simulations2 and can be extrapolated based on simple scale128

invariant arguments, but lacks the intuitive understanding of breaking the structure down129

to individual halos and subhalos, relevant e.g. when comparing the expected signals from130

Milky Way substructures with the total cosmological one.131

In this work, we will use both of these two approaches in parallel: the HM to define132

our benchmark model following simple but well motivated arguments for the choice of the133

relevant ingredients, and the PS framework to calculate the associated uncertainty due134

to extrapolation to small (unresolved) scales (since in this case the extrapolation simply135

affects one quantity which is unambiguously defined and measured in simulations).136

2It is measured using only a matter density map, without invoking concept of halos and without relying
on standard halo finders.
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Figure 4. Same as Fig. 3 but for the limits defined in equations (8) and (10).

their properties. In fact, this is true as well for the typical ingredients
required by the HM approach, such as the mass function, the halo
profile, etc. However, the dependence on redshift of the uncertainty
in the determination of such quantities is not accounted for (instan-
taneous virialization and convergence to asymptotic universal halo
profile are for example assumed). Note however how the minimum
condition enforced via equation (6) prevents the error to grow too
much, with a moderating effect that is more pronounced at high z

and high k.
Figs 3 and 4 show as well, for comparison, the extrapolation of

the HF and RHF fitting formulas, together with the corrected ver-
sion of equation (2) enforcing the stable clustering prediction. Both
the extrapolated values of HF and RHF exceed the bounds derived
from the simulations. This is not surprising since, as mentioned
before, the large-k asymptotic behaviour has not been considered
in the fitting procedure. On the other hand, the stable clustering
assumption provides a ‘best guess’ extrapolation that nicely falls
within the estimated limits, both from MS and MSII, for all red-
shifts considered, even in the case of the tighter aggressive limits
of equations (8) and (10). This is evident as well confronting the
values obtained for ζ (z) with the allowed interval as reported in
Table 1. It is important to note that at the highest k resolved by the

MSII simulation, the MSII power spectrum does fall within the esti-
mated uncertainty band (blue/dark shadowed region) deduced from
MS data both in Figs 3 and 4. This is a further consistency check of
the physically reasonable behaviour of the uncertainty extrapolation
schemes proposed.

These results are visualized as well in Fig. 5 where the uncer-
tainty on the dimensionless combination (1 + z)3 ζ (z) H0/ H(z)
estimated from the extrapolated MS data (blue regions) and MSII
data (red regions) is shown as a function of redshift. Black curves
correspond to the RHF+SC prediction. Two different values for
the integration cut-off are considered, kmax = 106 and 108 h Mpc−1

(continuous and dashed curves, respectively). All extrapolations
assume k" = k1 per cent. The left-hand panel assumes the more
conservative bounds of equations (5) and (6) while the right-hand
panel assumes equations (8) and (10). Clearly, the lower bounds
are not affected much by the two orders of magnitude difference in
the cut-off assumed here, while the upper bounds change by up to
about a factor of 10, depending on the redshift, in the conservative
extrapolation case. Notice that we limit the plots to the four outputs
available, z = 0, 1, 2 and 6 and that we have no upper bounds
estimated from MS at redshift z = 6, so we stop at z = 2. The es-
timated uncertainties obviously depend as well on the choice of k",
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Sum of Components 

•  Blazars, star-forming galaxies and radio galaxies can explain the intensity 
and the spectrum of the EGB 

Preliminary

• Active field of research currently updated using the IGRB extended energy range and 5 
year source catalogs.

• robust minimal isotropic astrophysical contribution only from blazar population (at 
the ~15 % level of the signal <100 GeV [Abdo+, APJ 2010]). 

Isotropic emission: ‘guaranteed’ contribution from 
unresolved gamma ray sources

[M. Ajello, Workshop on HE messengers, Chicago, 2014]



• in this work two types of limits: conservative and optimistic.
• the ‘true’ limits in-between
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PreliminaryPreliminary

•The strongest Fermi LAT limits in the >~5 TeV range. Good sensitivity to WIMPs in the 10-100 GeV.
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DM

– explore at what level the DM Galactic smooth counterpart of the isotropic signal 
impacts the derivation of the IGRB spectrum

Assembling the Gamma-Ray Sky

Primary Electron IC

Secondary & Nuclei IC

Bremss

Pion Decay

Dark Matter

Source Residuals

Isotropic:
EGB, Instumental

Normalization

Free, Gaussian, Fixed

Masking

Galactic Plane
Sources

Binning

12 Annular Bins
80 Logarithmic Energy Bins

Upcoming Additions

IC Anisotropic
DM IC (lepto-phillic models)
Alternative ISRFs

Brandon Anderson (UCSC) IDM 2010 8 / 16
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For the cross sections in the gray region DM Galactic smooth signal would significantly alter the 
IGRB spectrum: 2σ from its syst band (left) or 2σ departure wrt to the IGRB error-bars (right). For 
most of the exclusion band our procedure is self consistent. 

The DM limits in the intersection region are conservative, as IGRB gets lower in the presence of 
the Galactic smooth component.   

Galactic diffuse isotropic50m data

Isotropic emission: biases from the Galactic DM component



This project ([Albert+, 1406.3430; external authors: M. Grefe, C. Muñoz, C. Weniger]):
Search for DM lines from 100 MeV to 10 GeV, for annihilation (χχ→γγ) and 

decay (Ψ3/2 →νγ)
•previously unexplored region with the Fermi LAT
• in the case of decay, constrains models of Gravitino decay (Ψ3/2  → νγ)

Challenge:
at low energies the statistical uncertainty gets very small (<1%) and the 

systematic uncertainties dominate - important to model them properly
Data:

P7 REP Clean, ZA < 100°, 5.2 years
Fit for lines from 100 MeV to 10 GeV (±2σE windows -> 56.5 MeV to 11.5 GeV)22

Low energy line search:

Line search basics:
 
χ χ or χ →γX (X = γ, Z, H)                      

give monochromatic gamma signal
Advantage: sharp, distinct feature 

(“smoking gun”) 
Disadvantage: low predicted counts 

(loop-suppressed)
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Use Einasto Profile (α=0.17, ρʘ=0.4 GeV/cm3, Rʘ = 8.5 kpc).
“ROIcen” is the annihilation ROI;  |b| < 10°, |l| < 10° 
“ROIpol” is the decay ROI ; |b| > 60°
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Figure 3. Fractional deviations (f , see eq. (3.10)) observed in the Galactic plane scan are shown
as black dots. Eγ went from 100MeV to 10 GeV in steps of 0.25σE . The red line shows the average
statistical uncertainty from the Galactic plane scan. The blue dashed line shows the value we chose
to represent the δf from modelling biases; see text for details.

ROI Systematic
Modelling CR δfsyst

ROIcen 0.0105 0.0009 0.0105
ROIpol 0.0105 0.0100 0.0145

Table 1. Systematic fractional deviations from biases in modelling and contamination from residual
cosmic ray events (CR). δfsyst is derived by adding the Modelling and CR components in quadrature;
see text for detailed discussion.

From figure 3, we can infer some properties of the systematic uncertainties that affect
our search. The displacement of δf from zero and common variations with energy between all
the control ROIs are most likely caused by small biases in modelling the Fermi-LAT effective
area. The spread amongst the fits in the control ROIs is probably from our modelling of the
background spectra by a power law.

We also estimate the systematic uncertainty from residual cosmic-ray events passing our
γ-ray event selection. Since we use the P7REP_CLEAN event class, the cosmic-ray contamination
is not expected to be a large effect, especially for the region ROIcen, which focuses on the
bright Galactic Centre. However, cosmic-ray contamination is worrisome at large latitudes
(e.g. ROIpol region). To study the effect of cosmic-ray contamination, we select events that are
included in the less stringent P7REP_SOURCE class, but are not included in the P7REP_CLEAN

class in the ROIpol region. This sample will be enriched with cosmic-ray events that were not
removed by the P7REP_SOURCE selection, but did not pass the P7REP_CLEAN event selection.
Similar to what was done in ref. [16], we take the largest observed δf in this control sample
along with the expected γ-ray acceptance ratio between the P7REP_CLEAN and P7REP_SOURCE

selections (see appendix D5 in ref. [16]) to obtain an estimate of δfCR ∼ 0.01 in ROIpol. For a
summary of the estimated level of systematic fractional deviations in both ROIs see table 1.

Other systematic uncertainties in this search enter from our calculation of the Fermi -
LAT exposure, modelling of the energy dispersion, and our choice of Eγ grid spacing. The
overall uncertainty in the calculation of the Fermi-LAT effective area is ∼ 10%. Additionally,
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since it is expected to improve the statistical power of the search (see section IV of ref. [16]).
We found that while this improvement was important in searches for higher-energy spectral
lines (∼ 15% increase in statistical power for E � 10GeV), it was less than 10% at lower
energies, and is hence neglected in the present analysis. At higher energies the quality of
the energy reconstruction can vary markedly from event to event. For example, an on-axis
100 GeV γ-ray event leaks about 50% of its energy out the back of the Fermi -LAT [70].
Events at this energy with larger incident angles will travel through more radiation lengths in
the Fermi-LAT calorimeter, leak less energy out the back, and therefore typically have more
accurate energy reconstructions. However, the difference between the quality of the energy
reconstruction is less dramatic at lower energies (� 1GeV), where the energy deposition is
usually fully contained in the Fermi-LAT calorimeter.

The most relevant effect of any systematic biases that masks or fakes a line-like signal
(this includes both instrumental effects as well as effects due to the power-law approximation
of the background spectra) is to offset the estimated number of signal events with respect to
its true value. We expect such offsets to scale linearly with the number of events in the ROI;
therefore it is useful to introduce the fractional deviation f , which, roughly speaking, denotes
the fractional size of a line signal relative to the background under the signal peak (similar
to signal-to-background ratio):

f ≡ nsig/beff , (3.10)

where beff denotes the number of effective background events below a line signal. For each
ROI and value of Eγ , the number of effective background events is obtained as

beff =

� E+
i

E−
i

dE
Deff(E|Eγ)αE−ΓE(E)

αE−ΓE(E) +Deff(E|Eγ)
, (3.11)

where α and γ are determined from a power-law only fit to the data (with n�
sig = 0 fixed).

A systematic uncertainty in the number of signal events can now be conveniently ex-
pressed as being proportional to the fractional deviation, δf . For most systematically induced
features that could fake or hide a line signal, this quantity will be approximately indepen-
dent of the number of measured events in the adopted ROI. The corresponding distribution
function, PF (nsyst, beff) in eq. (3.8), will be determined empirically as discussed in the next
subsection.

As usual, upper limits at the 95% confidence level (CL) on the number of signal events
nsig are obtained by increasing nsig, while refitting all other parameters, until −2 lnL changes
by 2.71 from its best-fit value. The significance of a line signal in units of Gaussian sigma is
given by

�
2 lnL/L0, where L0 denotes the likelihood of a fit with the line flux set to zero.

Note that in our analysis, we neglect corrections to the finite angular resolution of the Fermi -
LAT. Furthermore, by construction, effects related to modelling uncertainties (i.e. modelling
the effective area, background emission, and not masking known point sources) are absorbed
in PF (nsyst, beff).

3.5 Systematics

As discussed in section VI of ref. [16], there are three classes of systematic uncertainties
involved when searching for γ-ray spectral lines: uncertainties on the calculated exposure
(δE/E), uncertainties on the fit estimates of the signal counts (δnsig/nsig), and line-like un-
certainties that could mask a true signal or induce a false signal (δf) that we discussed in
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statistical uncertainty

chosen average syst 
uncertainty

Preliminary

Focus on systematics which offsets the estimated number of signal events with 
respect to its true value  

Expect to scale linearly with the number of events in the ROI (δfsys)
Express as uncertainty in terms of a fractional signal

Estimate δfsys by fitting for lines in control regions 
Galactic Ridge (|L|>10°, 20°×20° squares along Galactic Plane)
δfsys from Bkg modelling, Aeff, and Sources

Below ~3 GeV our line search is systematics-limited
Fractional statistical uncertainty is δfstat~ 1/sqrt(beff)
Compare to estimated systematic uncertainties (δfsys ≤ 1%)



Include nuisance parameter (nsys) for systematically-induced line-like features:
•only consider the true signal events to be those that remain after subtracting 

the expected systematic offset, nsig’ = nsig − nsyst

•We add a Gaussian constraint on nsys to the likelihood fit
fsys determined by control regions fits (i.e. off-center Galactic Ridge)

Similar technique used to incorporate J-factor systematic uncertainties in LAT 
Collaboration dSph analysis

Can be applied whenever accounting for systematic uncertainties is 
important

the previous subsection. The two former are less worrisome since they are smaller than the

statistical uncertainty on the 95% CL limit on nsig (∼ 50% since nsig � beff, causing the

statistical uncertainty on nsig to be �
√
beff), and can safely be neglected.

The latter systematic uncertainties are especially worrisome since positive features could

induce false signals, while negative features could mask true signals. We quantify these

in terms of an uncertainty on the fractional deviation (see eq. (3.10)), δf . The statistical

uncertainty is δfstat � 1/
√
beff, while systematically induced fractional deviations are expected

to be δfsyst � constant. Therefore, as beff increases (i.e. the number of events used in the

fit increases), the systematic uncertainties can begin to dominate (δfstat � δfsyst). This is

the case for all of our low energy fits (Eγ � 3GeV), which is why it is necessary to include

systematic uncertainties correctly in the fitting procedure.

As mentioned in the previous subsection, we incorporate the systematic uncertainties

into our likelihood formalism via PF (nsyst, beff) (see eq. (3.8)). We break the degeneracy

between nsyst and nsig by constraining nsyst with a Gaussian distribution10

PF (nsyst, beff) =
1

σsyst
√
2π

exp

�
−(nsyst − µsyst)2

2σ2
syst

�
. (3.12)

We chose to set µsyst = 0 and define σsyst = δfsystbeff, where δfsyst was determined based

on fits for line-like signals in control regions. One could model nsyst more aggressively, for

example in an energy-dependent way, but we chose not to since we have only a limited number

of control regions available to verify the energy dependence of nsyst.

We fit for line-like signals in control regions where we do not expect any DM signal to

dominate in order to estimate δfsyst. We scan in 0.25σE steps in energy for line-like signals

(allowing for both positive and negative signals) in 20◦×20◦ ROIs along the Galactic plane in

10◦ steps excluding the 5 centre-most ROIs (i.e. |b| > 20◦; 31 total ROIs; cf. figure 2). Since

the DM signal is expected to peak in the Galactic Centre, this is a control region where non-

DM astrophysical processes dominate the observed γ-ray emission. Systematically induced

line-like features will result from modelling imperfections like averaging the energy-dependent

variations in the Fermi -LAT effective area over the ROI, not masking or modelling known

point sources, and modelling the background spectrum as a power law. It is not possible to

disentangle these components in our Galactic plane scans, so we consider them together as

modelling imperfections. We also studied the fractional deviations observed in γ rays from

the Earth’s limb emission and the Vela pulsar, see appendix B.

Figure 3 shows the fractional deviations observed in the Galactic plane scan. Also shown

is the average statistical uncertainty of the fractional deviation. If there were no systematic

effects, one would expect δfstat to contain 68% of the observed fractional deviations. Clearly

this is not the case, especially at lower energies, showing that systematic effects are not

negligible. At high energies, � 3GeV, the fits are dominated by statistical variations, while

at lower energies the fits are dominated by systematic effects. We calculated the δf values

that contained 68% of the Galactic plane fits, δf68(E), in a small energy range (±10%). To

be conservative, we choose the largest δf68 value observed in the Galactic plane scan (for

Eγ < 3GeV) as our estimate for the systematic uncertainty from biases in our modelling

of the LAT effective area, point-source contributions, and the background spectral shape;

δfGP = 0.0105.

10We also studied modeling nsyst with top hat and triangle functions with a base width of 2δfstat. They
improved and worsened the limits by ∼ 30% respectively. Given our choice of δfstat = 0.0105, we consider
this modeling choice to be simple, but conservative.
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point sources, and modelling the background spectrum as a power law. It is not possible to

disentangle these components in our Galactic plane scans, so we consider them together as

modelling imperfections. We also studied the fractional deviations observed in γ rays from

the Earth’s limb emission and the Vela pulsar, see appendix B.

Figure 3 shows the fractional deviations observed in the Galactic plane scan. Also shown

is the average statistical uncertainty of the fractional deviation. If there were no systematic

effects, one would expect δfstat to contain 68% of the observed fractional deviations. Clearly

this is not the case, especially at lower energies, showing that systematic effects are not

negligible. At high energies, � 3GeV, the fits are dominated by statistical variations, while

at lower energies the fits are dominated by systematic effects. We calculated the δf values

that contained 68% of the Galactic plane fits, δf68(E), in a small energy range (±10%). To

be conservative, we choose the largest δf68 value observed in the Galactic plane scan (for

Eγ < 3GeV) as our estimate for the systematic uncertainty from biases in our modelling

of the LAT effective area, point-source contributions, and the background spectral shape;

δfGP = 0.0105.

10We also studied modeling nsyst with top hat and triangle functions with a base width of 2δfstat. They
improved and worsened the limits by ∼ 30% respectively. Given our choice of δfstat = 0.0105, we consider
this modeling choice to be simple, but conservative.
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Low energy line search: fitting method

3.4 Fitting procedure

Our search for a line signal in the Fermi-LAT data, as well as the derivation of upper limits

on line fluxes, is based on the profile likelihood method (see e.g. ref. [72]). We model the sum

of the astrophysical γ-ray background and the cosmic-ray contamination of the P7REP_CLEAN
data empirically by a single power law with free normalisation and spectral index. Since the

power-law approximation is only valid locally and breaks down when considering large enough

energy ranges, we restrict the fit to small energy ranges centred around and moving with the

line energy. In the present work, we adopt an energy range of (Eγ − 2σE , Eγ + 2σE), where

Eγ denotes the line energy of interest, and σE is the energy resolution at that energy (±σE
is the 68% containment range). We selected this energy range as a compromise between a

loss of statistical power in smaller ranges, and increasing systematic uncertainties in cases

of larger ranges. Each fit was performed at a fixed energy, Eγ , in steps of 0.5σE , where σE
ranges from 20% of Eγ at 100 MeV to 10% of Eγ at 10 GeV. We used the RooFit toolkit [73]

(version 3.12) to implement the models and perform the likelihood minimisation.

At the low energies of interest, the number of photon events in our analysis is very large.

For computational efficiency, we perform a binned maximum likelihood fit to the data, with a

bin width of 0.066σE (i.e. 60 bins over the ±2σE energy window). Furthermore, we take into

account the possibility that the true number of signal events, nsig, is systematically offset by

nsyst from the best fit value, n�
sig. In other words, we only consider the true signal events to

be those that remain after subtracting the expected systematic offset, nsig = n�
sig −nsyst, and

taking into account its variance. The full likelihood function that we adopt in our analysis is

based on the product of the Poisson likelihoods (P ) to observe ci counts in each energy bin:

L(α,Γ, nsig, nsyst) = PF (nsyst, beff)
�

i

P (ci|µi(α,Γ, nsig + nsyst)) , (3.8)

where the expected number of events in the i-th energy bin (E−
i ≡ Eγ−2σE , E

+
i ≡ Eγ+2σE)

is given by

µi(α,Γ, n
�
sig) =

� E+
i

E−
i

dE
�
αE−ΓE(E) + n�

sig · Deff(E|Eγ)
�
, (3.9)

and Deff(E|Eγ) denotes the energy dispersion of the Fermi-LAT. Furthermore, E(E) denotes

the energy-dependent exposure of the ROI, Γ and α are the spectral index and normalisation

of the power-law background, beff is the effective number of background events in the energy

range covered by the line signal, nsyst is the additive systematic error (to be discussed below),

and PF is the distribution of nsyst, which we model to be independent of energy. Note that

we actually fitted for nbkg =
�
αE−ΓE(E)dE, the total number of events in the power-law

background, rather than α directly.

As discussed in appendix C5 of ref. [16], Deff varies slightly depending on the “observing

profile” (i.e. the amount of observing time for each event incident angle, θ). To account for this

in our search, we modelled Deff for each fit similar to what was done in ref. [17]. Specifically,

we integrated the energy- and θ-dependent representation of the energy dispersion provided

with the Fermi -LAT IRFs over the observing profile for the regions of interest and then fit a

triple Gaussian (sum of three Gaussian functions) parametrisation to that shape to serve as

our Deff model.

We furthermore investigated the effect of including additional information in our Deff
model that quantified the quality of the energy reconstruction on an event-by-event basis,
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Figure 6. Parameter space of decaying gravitino DM given in terms of the gravitino lifetime and
the gravitino mass. The diagonal band shows the allowed parameter space for gravitino DM in the
µνSSM. The numbers on the solid and dashed lines show the corresponding value of the photino–
neutrino mixing parameter, as discussed in section 2. The theoretically most favoured region is
coloured in grey. We also show several 95% CL lower limits on the gravitino lifetime coming from
γ-ray observations. The blue shaded region is excluded by the limits derived in this work.
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Figure 7. Comparison of the 95% CL upper limits on the DM pair annihilation cross section into two
photons found in this work to earlier results using Fermi -LAT and EGRET data. The blue shaded
region is excluded by the limits derived in this work.
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PreliminaryPreliminary

Ψ3/2 →νγ χχ→γγ

[Albert+, 1406.3430, JCAP submitted]



P7Transient to P7Clean Efficiency 

Ackerman et al  
(The Fermi LAT Col.)  
PRD 88, 082002 (2013) 
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High energy line search: update
• this analysis statistics dominated.
•curious hint for a 133 GeV line being followed up by the LAT team and community

- Much narrower than expected 
energy resolution

Since spring 2012, feature has decreased. 
Bkg fluctuation?
- Decreasing with more data

•  Let width scale factor float in fit (while preserving shape) 
•    

Ackerman et al (The Fermi LAT Col.)  
PRD 88, 082002 (2013) 

.. Fit with expected Edisp model 
! Fit allowing width to scale (s"=1 is expected) 

E (GeV)
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[C. Weniger+, ICTP 
workshop Oct, 2013] 

Weak line signal appears in the control sample (Earth limb (|θr|<520)
- Not large enough to explain all the GC signal (f=0.14, in GC would be 0.8σ).



Summary:

• Search for gamma ray signatures of cosmological DM annihilation are being improved:
• better handle on DM clustering properties
• extended energy range

• consistency checks with Galactic DM component

• Low energy gamma ray line search sets robust limits and utilizes a method of including 
systematic uncertainty in DM searches 

• Traditional sensitivity range to DM mass by Fermi LAT being expanded both at the high and 
low mass ends.

• Pass8 + cont’d LAT operation through till 2016 will boost this trend and increase sensitivity 
to DM search (L. Baldini’s talk!)   

!  Now into extended operations, since 2013 
!  NASA 2014 Senior Review just approved operations through 2016 

38 

Multi 
Messenger 
synergies 

Multi 
wavelength 
synergies 
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4

4 year data analysis (500 MeV - 200 GeV) 
50 Clusters (-> maximize #clusters) !
Search for CR-induced ɣ-rays: None* 
constraining CR physics:  !p,max " 21% &  
PCR/Pth " 1-2%

Ackermann et al., ApJ 787 18 (2014)

Status Quo
CR implications: Keith & Fabio

30

Sneak Peak: Galaxy Clusters stacked analysis

Galaxy Clusters: the biggest DM halos yet to form (contain hundreds of Galaxies).  
Challenge: DM clustering on small scales, in Cluster substructure is the source of 

most of uncertainty.
Analysis: 
5 year data analysis (500 MeV - 200 GeV), 34 Clusters
stacked likelihood analysis, as the one used for the dwarf spheroidal galaxies

.... more by Stephan!



Angular Power Spectrum (APS)
! We consider the APS as a metric for 

anisotropy.
! We decompose an intensity map I(!), 

with ! the sky direction, in spherical 
harmonics:

! The APS is given by the coefficients:

! The intensity APS indicates the 
dimensionful size of intensity fluctuations 
and can be compared with predictions for 
sources classes whose collective 
intensity is known or assumed
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Angular Power Spectrum (APS)
! We consider the APS as a metric for 

anisotropy.
! We decompose an intensity map I(!), 

with ! the sky direction, in spherical 
harmonics:

! The APS is given by the coefficients:

! The intensity APS indicates the 
dimensionful size of intensity fluctuations 
and can be compared with predictions for 
sources classes whose collective 
intensity is known or assumed
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– decompose an intensity map, with  the sky direction, in spherical harmonics:

– The APS is given by the coefficients

Isotropic emission: Angular Power Spectrum

J. Siegal-Gaskins High-energy messengers workshop | KICP | June 10, 2014

• preliminary dark matter constraints from published anisotropy measurement

• updated measurement should yield improved sensitivity due to more energy bins and 
improved statistics
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Anisotropy constraints on dark matter models
Constraints using 2-sigma upper limit 

on total measured anisotropy
Constraints using 2-sigma upper limits 

on non-blazar anisotropy

Fermi LAT collaboration + MultiDark + Komatsu + Linden, in prep
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Fermi LAT measurement of APS

! Data from the first 22 months.

! 4 energy bins (from 1GeV to 50 
GeV).

! Masking is applied covering point 
sources (1 year Fermi catalog) 
and the galactic plane (|b|<30 
deg).

! Galactic diffuse contribution to 
the high-latitude emission is 
minimized by subtracting the 
Fermi-LAT recommended model 
of the Galactic foregrounds from 
the data, and then calculating the 
APS of the residual map -> 
DATA:CLEANED.

Angular power is 
detected with a 

significance up to 7!.

Fermi-LAT collaboration, PRD.  85 083007 
(2012)

– 22m data analysis: APS detected with ~7sigma:

– consistent with being mostly due to the blazar population

– DM limits set: biggest uncertainty DM clustering properties at small scales

– work in progress: updated APS measurement and DM limits. cross correlation with 
Galaxy catalogs 

– important complementarity between angular anisotropy vs flux intensity DM search

[G. Gomez-Vargas, Anisotropy Workshop, 
Amsterdam, 2014]



!  Motivation: 
!  High Velocity Clouds of HI and HII gas 

(~106Msun) 
! Low galactic latitude, ~12.4Kpc 

!  Trajectory suggest is passed through 
Galactic disk ~70Myear ago 

!  Current bound state of gas suggest 
~100/1000x DM halo to confine gas 
through Milky way passage 
!  Large uncertainty in DM content 
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!  People: 
–  LAT Collaboration: Alex Drlica-Wagner, German Gomez Vargas, 

John Hewitt, Luigi Tibaldo 
–  External authors: Tim Linden 

!  Data:  
–  5.2 years, Pass7 reprocessed data, need specific model of diffuse 
!-rays 

Smith cloud:



!  Do not use standard diffuse model distributed for source 
analysis 

!  Build GALPROP templates of standard components of diffuse 
!-rays using InfraRed observations of Smith Cloud 
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Smith cloud:

Challenge:
close to the Galactic plane (3kpc below the plane) - diffuse modeling critical
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Smith cloud:


