TeVPA/IDM conference 25 June 2014

Global status of neutrino oscillations

Antonio Palazzo MPI für Physik – Munich

Outline

Introduction

Pre-post Neutrino 2014 comparison

Focus on the "hottest" parameters $\delta \notin \theta_{23}$

Conclusions

The 3v mass spectrum

NH OT IH ?

NMH and absolute mass at the center of investigation

The 3v mixing matrix

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$U = O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}$$

Dirac CP-violating phase δ

U is non-real if $\delta \neq (0, \pi)$

$$\Gamma_{\delta} = \text{diag}(1, 1, e^{+i\delta})$$
$$\delta \in [0, 2\pi]$$

Explicit form

$$U= egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \ 0 & 1 & 0 \ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{pmatrix}$$

 $\theta_{23} \sim 41^{\circ} \quad \theta_{13} \sim 9^{\circ} \quad \theta_{12} \sim 34^{\circ}$

Three non-zero θ_{ij} : Way open to CPV searches

Precondition for Leptonic CPV (together with two non-zero mass-splittings)

The Jarlskog invariant gives a parameterization-independent measure of the CP violation induced by the non-reality of U

$$J = \Im[U_{\mu3}U_{e2}U_{\mu2}^*U_{e3}^*]$$

In the standard parameterization the expression of J is:

$$J = \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta$$

Only if all three $\theta_{ij} \neq 0$ the CP symmetry can be violated

- quarks: $J_{CKM} \sim 3 \times 10^{-5}$, much smaller than $|J|_{max} = \frac{1}{6\sqrt{3}} \sim 0.1$
- leptons: [J] may be as large as 3 x 10-2

It will depend on δ ... it seems v physicists are lucky ... 5

Status of global 3v oscillation analysis (Just before Neutrino 2014)

Weak preference for $\delta \in [\pi, 2\pi]$ (sin $\delta < 0$)

Some preference for first octant of θ_{23} but weaker in IH

No sensitivity to neutrino mass hierarchy

Capozzi, Fogli, Lisi, Marrone, Montanino, A.P. PRD 89, 093018 (2014) [arXiv:1312.2878v2]

News from Neutrino 2014

• New reactor data (Daya-Bay, RENO, D-CHOOZ)

- RENO & D-CHOOZ show excess around 5 MeV
- Rumors about similar findings in Daya-Bay
- 5 MeV bump does not affect θ_{13} (near/far ratios)
- New data from ICECUBE, MINOS+, SK-IV ATM

Daya-Bay has the most important impact on the fit On θ_{13} (direct) \notin on $[\delta, \theta_{23}]$ via correlation with θ_{13}

Our preliminary post v-2014 global fit includes the new Daya-Bay & RENO. Inclusion of other data sets (having a minor impact) is in progress.

Status of global 3v oscillation analysis (After Neutrino 2014)

Preference for $\delta \in [\pi, 2\pi]$ (sin $\delta < 0$) NH: stable IH: enhanced

Preferred θ_{23} octant swaps with NH <-> IH

> No sensitivity to neutrino mass hierarchy

Capozzi, Fogli, Lisi, Marrone, Montanino, A.P. PRELIMINARY

Pre-post v 2014 comparison: θ_{13}

Best fit value sensibly lower (0.0237 → 0.0217) Combination dominated by Daya-Bay

9

Pre-post v 2014 comparison: θ_{23}

Situation almost unaltered In IH now it is preferred the second octant In NH second octant less disfavored than before

Pre-post v 2014 comparison: δ

Preference for sin $\delta < 0$ slightly enhanced

Is the hint of sin $\delta < 0$ robust?

Reinforced for increasingly rich data sets But mostly driven by "large" T2K v_e signal (real o statistical over-fluctuation?) In part due to ATM (delicate analysis)

Situation much different for θ_{23}

In NH slight preference for first octant emerges totally driven by SK ATM

In IH different data sets prefer opposite octants no global octant preference emerges Estimate of θ_{23} octant is currently very fragile

A few basic observations

* Figures shown in this slide do not necessarily contain up to date material; they are used here only for illustration purposes

$[\theta_{23}, \theta_{13}]$ correlation plot

LBL v_{μ} disappearance

Slight non-maximal preference from MINOS but T2K preference for maximal mixing dominates

LBL ve appearance

Strong T2K signal points to big values of θ_{13} , especially in IH, where MSW tends to suppress $P_{\mu e}$

Once REA fix θ_{13} octant asymmetry may emerge

- NH: no octant asymmetry (REA Lie just in the middle of LBL) IH: θ_{23} in 2nd octant (REA Lie in the lower part of LBL region)

ATM tend to push θ_{23} in the first octant (NH & IH)

- NH: ATM easily push global θ_{23} estimate in the first octant
- IH: no global octant preference (ATM counterbalance REA+LBL)

$[\theta_{23} - \delta]$ correlation plot

Effect of SK Atm in the global δ estimate is twofold: I) Direct: in SK we find a weak preference for $\delta = 1.2 \pi$ (NH & IH) II) Indirect: via $[\delta, \theta_{23}]$ anticorrelation (especially important in NH)

- 3-flavor scheme describes all data (except VSBL)
- Intriguing indication in favor of sin $\delta < 0$
- Preference for octant of θ_{23} is very fragile
- No sensitivity to neutrino mass hierarchy
- Be ready to surprises to come from new data

Thank you for your attention!

Backup slides

$[\theta_{13} - \delta]$ correlation plot

LBL + Sol + KL almost insensitive to δ

Sensitivity emerges once reactors fix θ_{13}

SK Atmospheric slightly reinforce sin $\delta < 0$

Other data presented at Neutrino 2014*

MINOS+

ICECUBE

SK-IV ATM update

* To be included in our global analysis; work in progress.

21

Introducing a light sterile neutrino

small mixing of active flavors with the 4th state

Estimate of θ_{13} in a 3+1 scheme

 $\Delta m_{14}^2 \sim 1 eV^2$

A.P., Review for Mod. Phys. Lett. A 28, 1330004 (2013)

• Solar + LBL reactors:

$$\sin^2 \theta_{14} < 0.04 \quad (90\% \text{ C.L.})$$

Bound indep. of reactor fluxes (KamLAND only shape)

Going down with Δm_{14}^2

A.P. JHEP 1310, 172 (2013) [1308.5880 hep-ph]

3v estimate robust provided that $\Delta m_{14}^2 > 6 \times 10^{-3} \text{ eV}^2$ No lower bound for smaller $\Delta m_{14}^2 (\theta_{13} - \theta_{14} \text{ degeneracy})$ However, in this region lower bound by T2K

Sensitivity to NMH of future experiments

Blennow et al. 1311,1822

Reactor, Accelerators, atmospheric v experiments

PINGU @ IceCube

Signature in the energy/zenith-angle distribution

PINGU LOI

Interference of MSW potential with atmospheric Δm^2