Searches for point sources and small-scale anisotropies with IceCube

Anna Bernhard Physics Department, TU München Astroparticle Physics Conference 2014 Amsterdam

Bundesministerium für Bildung und Forschung

UM Graduate School

ASSOCIATION

Alliance for Astroparticle Physics

IceCube: the largest neutrino detector

- A neutrino detector located at the south pole
- 5160 DOMs (digital optical modules) are installed in a depth of 1450m to 2450m and 162 surface stations (IceTop)
- Goal: observe the universe through high energy neutrinos instead of light

IceCube Configurations

Motivation

- Data sample with events selected on tracks
- The PS Likelihood is not seeing any strong source
- Is there a hidden signal coming from various weak sources?

Motivation

- 2 Searches for event clustering at angular scales comparable to detector resolution (small-scale anisotropies):
 - 1) Autocorrelation study of the full sky (3 years)
 - 2) Multi Point Source Study of the Cygnus region (4 years)

 1)Autocorrelation Analysis of the full sky (3 years)
 2)Multi Point Source Analysis of the Cygnus region (4 years)

Search for Event Autocorrelations

- Method: Count the number of event pairs given a maximum angular separation
- Compare this to distributions from isotropic data, which comes from scrambled data (with randomized RA)
- The maximum angular separation can be varied

Finley, C. B., & Westerhoff, S. 2004, Astroparticle Physics, 21, 359

This autocorrelation study

- Use 3 years of IceCube data (IC40+IC59+IC79)
- Use four different energy bins (all events, 10% highest events, 1% highest, 0.1% highest) for a better background suppression
- Scan an angular scale from 0° to 5° in steps of 0.25°
- Look at north and south separately
 Challenges:
- Computationally not trivial since there will be many pair
 - → Bachelor student Kevin Abraham working on a GPU implementation

Discovery Potential E⁻²

Results

Northern hemisphere

Southern hemisphere

- Post-trial p-values are obtained from scrambled data
- North: $\rightarrow 0.84$

South: $\rightarrow 0.73$

Limits E⁻²

 1)Autocorrelation Analysis of the full sky (3 years)
 2)Multi Point Source Analysis of the Cygnus region (4 years)

Where is the Cygnus region?

- It is roughly located within Galactic longitudes 70°- 90° and latitudes -4°- 8°
- We see a superimposition of the local spiral arm and the projection of the Perseus and outer arm of the Galaxy

Why is it interesting for us?

- one of the richest known regions of star formation in the Galaxy
- Contains several massive giant molecular cloud complexes
- strong TeV gamma-ray emission
- use Multi Point Source Method with additional energy weighting (eMPS)

How does the eMPS work?

- Use a box of 11°x7° around the center of the Cygnus
- Count pairs of events that are closer together than a certain angular threshold
- Angular scale goes from 0.25° to 5° in steps of 0.25°
- Produce background TS on scrambled events (in RA)
- Add different signal scenarios

Sestayo, Y. & Resconi, E. 2013, Astroparticle Physics, 44, 15-23

Background events

- Sources with signal events
- Diffuse component

Discovery Potential

Discovery Potential

Results

Limit E⁻²

Summary and Outlook

- We presented two analyses:
 - 1) Autocorrelation study of the full sky with 3 years → Results: Underfluctuations in both hemispheres
 - 2) MPS Analysis of the Cygnus region with 4 years → Result: Underfluctuation
- Outlook
- Autocorrelation analysis for the full sky with four years
- Investigate the application of the MPS to other regions of the sky (GC, CenA, Fermi Bubbles)