Complementarity in direct dark matter searches

Miguel Peiró Based on arXiv: 1304.1758 & 1403.3539

Work done in collab. with: D. G. Cerdeño, M. Fornasa, J-H. Huh, C. Marcos, and the ROSEBUD collaboration.

Instituto de Física Teórica

MultiDark

Multimessenger Approach for Dark Matter Detection

Complementarity in direct dark matter searches An update Miguel Peiró Based on arXiv: 1304.1758 & 1403.3539 Work done in collab. with: D. G. Cerdeño, M. Fornasa, J-H. Huh, C. Marcos, and the ROSEBUD collaboration.

Instituto de Física Teórica

MultiDark

Multimessenger Approach for Dark Matter Detection

Combining largels

Let's assume that an experiment 1 measures a signal, generated by the DM mass and the SI-SD cross sections, the number of events would be given by: $N_1 = A_1 \sigma^{SI} + B_1 \sigma^{SD}$ where the parameters A and B depends on the nucleus and DM mass.

If we assume that DM mass is well determined (for simplicity):

The red dot represents the values of the cross sections used to "simulate" the signal

Combining largels

Let's assume that an experiment 1 measures a signal, generated by the DM mass and the SI-SD cross sections, the number of events would be given by: $N_1 = A_1 \sigma^{SI} + B_1 \sigma^{SD}$ where the parameters A and B depends on the nucleus and DM mass.

If we assume that DM mass is well determined (for simplicity):

The red dot represents the values of the cross sections used to "simulate" the signal There is a degeneracy between the cross sections (the signal can be explained by both alone or a combination)

Combining largels

Let's assume that an experiment 1 measures a signal, generated by the DM mass and the SI-SD cross sections, the number of events would be given by: $N_1 = A_1 \sigma^{SI} + B_1 \sigma^{SD}$ where the parameters A and B depends on the nucleus and DM mass.

If we assume that DM mass is well determined (for simplicity):

The red dot represents the values of the cross sections used to "simulate" the signal There is a degeneracy between the cross sections (the signal can be explained by both alone or a combination)

Including a second experiment

 $N_2 = A_2 \sigma^{SI} + B_2 \sigma^{SD}$

Combining largels

Let's assume that an experiment 1 measures a signal, generated by the DM mass and the SI-SD cross sections, the number of events would be given by: $N_1 = A_1 \sigma^{SI} + B_1 \sigma^{SD}$ where the parameters A and B depends on the nucleus and DM mass.

If we assume that DM mass is well determined (for simplicity):

The red dot represents the values of the cross sections used to "simulate" the signal There is a degeneracy between the cross sections (the signal can be explained by both alone or a combination) Including a second experiment

 $N_2 = A_2 \sigma^{SI} + B_2 \sigma^{SD}$

Iff the parameters A and B from each of the experiments are different, then we end up with a

FINITE CONTOUR Both experiments are

COMPLEMENTARY

The real situation

Ingredients of the analyisis:

- We generate a "signal" by choosing a BM point defined by $m_{DM}, \sigma^{SI}, \sigma^{SD}$

Ingredients of the analyisis: – We generate a "signal" by choosing a BM point defined by $m_{DM}, \sigma^{SI}, \sigma^{SD}$ dR/dE_R

The total number of events in a series of bins must be calculated N = Rt (t=live time)

$$N_{12} = \int_{E_1}^{E_2} dE_R \frac{\varepsilon \rho_o}{m_N m_{DM}} \int_{v_{min}}^{v_{esc}} vf(v) \frac{d\sigma}{dE_R}(v, E_R) dv$$

And extend from threshold energy up to the maximum (usually defined as energy window)

Ingredients of the analyisis: - We generate a "signal" by choosing a BM point defined by m_{DM} , σ^{SI} , σ^{SD} dR/dE_R We perform a scan over the parameter space $E_{H}E_{I}$ E_{S} E_{R}

The total number of events in a series of bins must be calculated N = Rt (t=live time)

$$N_{12} = \int_{E_1}^{E_2} dE_R \frac{\varepsilon \rho_o}{m_N m_{DM}} \int_{v_{min}}^{v_{esc}} vf(v) \frac{d\sigma}{dE_R}(v, E_R) dv$$

And extend from threshold energy up to the maximum (usually defined as energy window) We compare both sets of data using a Poissonian likelihood function

Ingredients of the analyisis:

- We generate a "signal" by choosing a BM point defined by $m_{DM}, \sigma^{SI}, \sigma^{SD}$
- We perform a scan over the parameter space
- We include astrophysical uncertainties

Nuisance parameter	Range	Prior distribution
$ ho_{\mathrm{WIMP},\odot}$	$[0.2, 0.6] \text{ GeV cm}^{-3}$	normal
$v_{ m esc}$	$[478, 610] \text{ km s}^{-1}$	normal
v_{\odot}	$[170, 290] \text{ km s}^{-1}$	normal
k	[0.5, 3.5]	flat

Lisante et al '10

$$F_{k}(v) = N_{k}^{-1}v^{2} \left[e^{-v^{2}/k\Delta v^{2}} - e^{-v_{esc}^{2}/k\Delta v^{2}} \right]^{k} \theta(v_{esc} - v) \qquad N_{k} = \Delta v^{3} e^{-y_{e}^{2}} \int_{0}^{y_{e}} y^{2} \left(e^{-(y^{2} - y_{e}^{2})/k} - 1 \right)^{k} dy$$

Binney & Tremaine
$$y_{e} = v_{esc} / \Delta v$$

Ingredients of the analyisis:

- We generate a "signal" by choosing a BM point defined by $m_{DM}, \sigma^{SI}, \sigma^{SD}$
- We perform a scan over the parameter space
- We include astrophysical uncertainties
- We include nuclear uncertainties

Isotope	Ν	α	eta
⁷³ Ge	0.0749 - 0.2071	5.0 - 6.0	0.0304 - 0.0442
¹²⁹ Xe	0.0225 - 0.0524	4.0625 - 4.3159	0.001 - 0.0093
¹³¹ Xe	0.0169 - 0.0274	3.9913 - 4.7075	0.05 - 0.105
127I	0.0297 - 0.0568	4.0050 - 4.4674	0.05 - 0.057
²³ Na	0.0098 - 0.0277	2.0 - 3.5287	0 - 0.1250
19F	0.0505 - 0.1103	2.9679 - 3.0302	0 - 0.0094

Playing with Ge and Xe

Experimental setups for Ge and Xe

- Background free experiments (in previous works we have shown that the expected levels of background in these detectors do not affect the complementary conclusions)

- We use natural abundances for each of the nuclei
- Exposure of 300 kg yr (1 ton yr with 30% of efficiency)
- 3 keV threshold for each
- Maximum energy: 100 keV for Ge and 43 keV for Xe
- Gaussian energy resolution

Current experiments (Ge,Xe)

NOT ABLE TO RECONSTRUCT THE CROSS SECTIONS THE MASS OF THE WIMP IS WELL RECONSTRUCTED

Ge

Current experiments (Ge,Xe)

BM point
m_χ = 20GeV
σ^{SI} = 10⁻⁹ pb
σ^{SD} = 10⁻⁵ pb
Sest fit point
68% and 99%CL profile
Likelihood contours

Xe not able to reconstruct the cross sections The mass of the wimp is well reconstructed

Current experiments (Ge,Xe)

Current experiments (Ge,Xe)

NOT ABLE TO RECONSTRUCT THE CROSS SECTIONS EVEN IN COMBINATION

Ge+Xe

BM point
m_χ = 20GeV
σ^{SI} = 10⁻⁹ pb
σ^{SD} = 10⁻⁵ pb
Sest fit point
68% and 99%CL profile
Likelihood contours

THE MASS OF THE WIMP IS WELL RECONSTRUCTED

Current experiments (Ge,Xe)

For light DM (20 GeV) and SIdominated signals in Ge and Xe the combination of Ge and Xe like experiments is NOT COMPLEMENTARY

LET'S SEE A BENCHMARK POINT IN WHICH THE RATE IS SD-DOMINATED IN GE AND XE

Current experiments (Ge,Xe)

BM point
m_χ = 50GeV
σ^{SI} = 10⁻¹⁰ pb
σ^{SD} = 1.5 × 10⁻⁴ pb
⊗ Best fit point
68% and 99%CL profile
Likelihood contours

Ge NOT ABLE TO RECONSTRUCT THE CROSS SECTIONS THE MASS OF THE WIMP IS WELL RECONSTRUCTED ONLY AT 68% CL

Current experiments (Ge,Xe)

BM point
m_χ = 50GeV
σ^{SI} = 10⁻¹⁰ pb
σ^{SD} = 1.5 × 10⁻⁴ pb
⊗ Best fit point
68% and 99%CL profile
Likelihood contours

NOT ABLE TO RECONSTRUCT THE CROSS SECTIONS THE MASS OF

Xe

THE WIMP IS BETTER RECONSTRUCTED

Current experiments (Ge,Xe)

BM point
m_x = SOGeV
σ^{SI} = 10⁻¹⁰ pb
σ^{SD} = 1.5 × 10⁻⁴ pb
Sest fit point
68% and 99%CL profile
Likelihood contours

THE MASS OF THE WIMP AND THE SD CROSS SECTION IS RECONSTRUCTED

Ge+Xe

NOT ABLE TO RECONSTRUCT

THE SI CROSS SECTION

Including the bolometers LiF - CaW04 - CaF2- NaI

Experimental setups for the bolometers

- Background free experiments (in previous works we have shown that the expected levels of background in these detectors do not affect the complementary conclusions)

- We use natural abundances for each of the nuclei
- Exposure of 300 kg yr (1 ton yr with 30% of efficiency)
- 10 keV threshold for each
- Maximum energy: 100 keV
- Energy resolution: 5% FWHM
- For NaI: thermal quenching of 0.85, 1.0 and 1.15

Including the bolometers LiF - CaW04 - CaF2- NaI

Experimental setups for the bolometers

- Background free experiments (in previous works we have shown that the expected levels of background in these detectors do not affect the complementary conclusions)

- We use natural abundances for each of the nuclei
- Exposure of 300 kg yr (1 ton yr with 30% of efficiency)
- 10 keV threshold for each
- Maximum energy: 100 keV
- Energy resolution: 5% FWHM
- For NaI: thermal quenching of 0.85, 1.0 and 1.15

WE START WITH CASE OF SI DOMINATED RATE IN GE AND XE

Ge + Xe + Bolometer

In black: 68% and 99%CL contours for Ge+Xe

SI and mass well reconstructed

SD cross section sensitivity of NaI similar to those of Ge and Xe

Current experiments (Ge,Xe) Ge + Xe + LiF Ge + Xe + CaFz COMPLEMENTARY Ge + Xe + Caw04 Ge + Xe + NaI NOT COMPLEMENTARY (but a considerable improvement) AGAIN LET'S SEE A BENCHMARK POINT IN WHICH THE RATE IS SD-DOMINATED IN GE AND XE

Current experiments (Ge,Xe) Ge + Xe + LiF Ge + Xe + CaFz NOT COMPLEMENTARY Ge + Xe + CaW04 Ge + Xe + NaI NOT COMPLEMENTARY HOWEVER, IN ALL CASES THE MASS AND SD CROSS SECTION CAN BE RECONSTRUCTED AT 99% CL A GOOD IMPROVEMENT !!!

EFFECT OF QUENCHING (NaI)

Conclusions

- We investigate how the combination of different targets in direct detection experiments helps in determining the DM properties
- Ge and Xe can be good for discovery but might not be able to measure all DM properties
- The situation seems to be more promising for the targets investigated here: LiF, CaF2, NaI and CaWO4
- We are generalizing the analysis for bigger regions of the parameter space and implementing the new experimental features for targets like CaWO4 (see talk by R. Strauss)

Thanks!

Backup slides

Full scan fixing the mass to 50 GeV

∈ [ka vr]

Backup slides

0^L

∈ [kg yr]

Full scan fixing the mass to 50 GeV

0L

∈ [ka yr]