Overview of ATLAS & CMS Supersymmetry searches

Troels C. Petersen

(ATLAS, Niels Bohr Institute, University of Copenhagen)

		Part of:
	and the second s	Discovery
210 The group of the	and provide the second	
180	UNIVERSITY OF COPENHAGEN	THE LUNDBECK FOUNDATION

Outline of presentation

Motivations for searches:

- SUSY and naturalness
- SUSY production classes

ATLAS & CMS SUSY searches:

- Gluinos and squarks: Jets + MET
- 3rd generation squarks: b-jets + MET
- ElectroWeak production
- Generalized searches

Conclusions and outlook

Notes on limited warrenty: I will assume general knowledge of LHC running and the ATLAS+CMS detectors. Covering broadly (80+ analysis),

I will necessarily be short/undetailed.

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

$$SUSSY introduction
$$C_{CW}(i)^{A}\partial h^{A} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu}) + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu}) + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu}) + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu}) + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu}) + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} + \partial_{V}A_{\mu} - \psi(h^{A})h^{A} + \partial_{V}A_{\mu} - \psi(h^{A})h^{A} + \partial_{V}A_{\mu} - \psi(h^{A})h^{A} + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} - \psi(h^{A})h^{A} + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} + \frac{1}{2}|\partial_{\mu}X^{\mu} - \partial_{V}A_{\mu} - \frac{1}{2}|\partial_{\mu}X^{\mu} - \frac{1$$$$

SM vs. SUSY

ASTROPARTICLE 2014

The Standard Model (SM) faces problems:

- No Dark Matter (DM) candidates.
- No Matter-Antimatter asymmetry.
- Extreme fine tuning of Higgs mass.
 Super Symmetry (SUSY) offers a solution:
 29 sparticles, 4 Higgs' and R-parity: R = (-1)^{2j+3B+L}

If R-parity is conserved (mostly assumed):

- LSP is stable (i.e. DM candidate).
- SUSY particles are pair produced.
- Final states have MET signatures.

bare mass

Extra Higgs' may solve asymmetry problem and SUSY cancels:

 $m_h^2 \approx m_{h\,0}^2 - \left[\frac{\lambda_f^2}{8\pi^2} N_c^f \int^{\Lambda} \frac{d^4 p}{p^2}\right] \approx m_{h\,0}^2 + \left[\frac{\lambda_f^2}{8\pi^2}\right]$

I-loop correction

TROELS C. PETERSEN (NBI)

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	$^{+1}$	$H^0_u \ H^0_d \ H^+_u \ H^d$	$h^0 \ H^0 \ A^0 \ H^{\pm}$
			$\tilde{u}_L \tilde{u}_R \tilde{d}_L \tilde{d}_R$	(same)
squarks	0	$^{-1}$	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	(same)
			$\tilde{t}_L \ \tilde{t}_R \ \tilde{b}_L \ \tilde{b}_R$	$\tilde{t}_1 \ \tilde{t}_2 \ \tilde{b}_1 \ \tilde{b}_2$
			$\tilde{e}_L \ \tilde{e}_R \ \tilde{\nu}_e$	(same)
sleptons	0	$^{-1}$	$\tilde{\mu}_L \ \tilde{\mu}_R \ \tilde{\nu}_\mu$	(same)
			$\tilde{\tau}_L \tilde{\tau}_R \tilde{\nu}_{\tau}$	$\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_\tau$
neutralinos	1/2	$^{-1}$	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$
charginos	1/2	$^{-1}$	\widetilde{W}^{\pm} \widetilde{H}^{+}_{u} \widetilde{H}^{-}_{d}	\tilde{C}_1^{\pm} \tilde{C}_2^{\pm}
gluino	1/2	$^{-1}$	\widetilde{g}	(same)
goldstino (gravitino)	1/2 (3/2)	$^{-1}$	\tilde{G}	(same)

From Quantum Diaries

SM vs. SUSY

The Standard Model (SM) faces problems:

- No Dark Matter (DM) candidates.
- No Matter-Antimatter asymmetry.
- Extreme fine tuning of Higgs mass.
 Super Symmetry (SUSY) offers a solution:
 29 sparticles, 4 Higgs' and R-parity: R = (-1)^{2j+3B+L}

If R-parity is conserved (mostly assumed):

- LSP is stable (i.e. DM candidate).
- SUSY particles are pair produced.
- Final states have MET signatures.

Extra Higgs' may solve asymmetry problem and SUSY cancels "dangerous" loop terms.

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates		
Higgs bosons	0	$^{+1}$	$H^0_u \ H^0_d \ H^+_u \ H^d$	$h^0 \ H^0 \ A^0 \ H^{\pm}$		
			$\tilde{u}_L \tilde{u}_R \tilde{d}_L \tilde{d}_R$	(same)		
squarks	0	$^{-1}$	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	(same)		
			$\tilde{t}_L \ \tilde{t}_R \ \tilde{b}_L \ \tilde{b}_R$	$\tilde{t}_1 \ \tilde{t}_2 \ \tilde{b}_1 \ \tilde{b}_2$		
			$\tilde{e}_L \ \tilde{e}_R \ \tilde{\nu}_e$	(same)		
sleptons	0	$^{-1}$	$\tilde{\mu}_L \ \tilde{\mu}_R \ \tilde{\nu}_\mu$	(same)		
			$\tilde{\tau}_L \tilde{\tau}_R \tilde{\nu}_{\tau}$	$\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_\tau$		
neutralinos	1/2	$^{-1}$	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$		
charginos	1/2	$^{-1}$	\widetilde{W}^{\pm} \widetilde{H}^{+}_{u} \widetilde{H}^{-}_{d}	\tilde{C}_{1}^{\pm} \tilde{C}_{2}^{\pm}		
gluino	1/2	$^{-1}$	\widetilde{g}	(same)		
goldstino (gravitino)	1/2 (3/2)	$^{-1}$	\widetilde{G}	(same)		

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

SM vs. SUSY naturalness

The Standard Model (SM) faces problems:

- No Dark Matter (DM) candidates.
- No Matter-Antimatter asymmetry.
- Extreme fine tuning of Higgs mass. Super Symmetry (SUSY) offers a solution: 29 sparticles, 4 Higgs' and R-parity: $R = (-1)^{2j+3B+L}$

If R-parity is conserved (mostly assumed):

- LSP is stable (i.e. DM candidate).
- SUSY particles are pair produced.
- Final states have MET signatures.

Extra Higgs' may solve asymmetry problem and SUSY cancels "dangerous" loop terms.

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates				
Higgs bosons	0	$^{+1}$	$+1 H^0_u \ H^0_d \ H^+_u \ H^d \qquad h^0 \ H^0 \ A^0$					
		$\tilde{u}_L \tilde{u}_R \tilde{d}_L \tilde{d}_R$ (sa		(same)				
squarks	0	$^{-1}$	$\tilde{s}_L \ \tilde{s}_R \ \tilde{c}_L \ \tilde{c}_R$	(same)				
			$\tilde{t}_L \ \tilde{t}_R \ \tilde{b}_L \ \tilde{b}_R$	$\tilde{t}_1 \ \tilde{t}_2 \ \tilde{b}_1 \ \tilde{b}_2$				
			$\tilde{e}_L \ \tilde{e}_R \ \tilde{\nu}_e$	(same)				
sleptons	0	$^{-1}$	$\tilde{\mu}_L \ \tilde{\mu}_R \ \tilde{\nu}_\mu$	(same)				
			$\tilde{\tau}_L \tilde{\tau}_R \tilde{\nu}_{\tau}$	$\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_\tau$				
neutralinos	1/2	$^{-1}$	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$				
charginos	1/2	$^{-1}$	\widetilde{W}^{\pm} \widetilde{H}^{+}_{u} \widetilde{H}^{-}_{d}	\tilde{C}_1^{\pm} \tilde{C}_2^{\pm}				
gluino	1/2	$^{-1}$	\widetilde{g}	(same)				
goldstino (gravitino)	1/2 (3/2)	$^{-1}$	\tilde{G}	(same)				

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

PAGE 3/25

SUSY cross section

The LHC accelerator, the data and ATLAS & CMS detectors A per and the total of total o heart A had a date of the second and $excellent - \frac{1}{4}(w_{\mu}^{+}A_{\nu} - w_{\mu}^{+}W_{\nu}) + \frac{9}{9}(w_{\mu}^{+}A_{\mu}) + \frac{9}{9}(w_{\mu}$ $\frac{1}{2}\frac{1}{2}M_{\pi}^{2}\eta^{2} - \frac{gM_{\eta}^{2}}{8M_{W}}\eta^{3} - \frac{g'^{2}M_{\eta}^{2}}{32M_{W}}\eta^{4} + |M_{W}W_{\mu}^{+} + \frac{g}{2}\eta W_{\mu}^{+}|^{2} +$ $+\frac{1}{2}|\partial_{\mu}\eta + iM_Z Z_{\mu} + \frac{ig}{2c_w}\eta Z_{\mu}|^2 - \sum \frac{g}{2}\frac{m_f}{M_W}\bar{\Psi}_f\Psi_f\eta$

 $\approx \pi$

Monday, June 23, 14

μ

ATLAS & CMS SUSY searches

 $\mathcal{L}_{GWS} = \sum_{f} (\bar{\Psi}_{f}(i\gamma^{\mu}\partial\mu) + m_{f})\Psi_{f} - eQ_{f}\bar{\Psi}_{f}\gamma^{\mu}\Psi_{f}A_{\mu}) +$

$$\frac{g}{f_2} \sum_{i=1}^{n} \frac{(a_L^i \gamma^\mu b_L^i W_\mu^i + b_L^i \gamma^\mu a_L^i W_\mu) + \frac{g}{20c}}{(a_L^i \gamma^\mu (I_f^3 - 2s_w^2 Q_f - I_f^3 \gamma_5) \Psi_f Z_\mu + \frac{g}{20c}} - \frac{1}{4} |\partial_\mu X_\nu - \partial_\nu A_\mu + ie(W_\mu^+ W_\nu^+ - W_\mu^+ W_\nu)|^2 - \frac{1}{2} |\partial_\mu W_\nu^+ - \partial_\nu W_\mu^+ + \frac{-ie(W_\mu^+ A_\nu - W_\nu^+ A_\mu) + ig c_w (W_\mu^+ Z_\nu - W_\nu^+ Z_\mu)|^2 + \frac{1}{4} |\partial_\mu Z_\nu - \partial_\nu Z_\mu^- + ig' c_w (W_\mu^- W_\nu^+ - W_\mu^+ W_\nu^-)|^2 + \frac{1}{4} |\partial_\mu Z_\nu^- - \partial_\nu Z_\mu^- + ig' c_w (W_\mu^- W_\nu^+ - W_\mu^+ W_\nu^-)|^2 + \frac{1}{2} |\partial_\mu \eta^+ iM_Z Z_\mu^- + \frac{ig}{2c_w} \eta Z_\mu^-|^2 - \sum_f \frac{g}{2} \frac{m_f}{M_W} \bar{\Psi}_f \Psi_f \eta$$

ATLAS & CMS search overview

A total of 51+31 SUSY analysis to review: Impossible!

Monday, June 23, 14

ASTROPARTICLE 2014

PAGE 6/25

ATLAS & CMS search overview

Three general subjects will be considered:

- Jets + MET searches (squarks and gluinos).
- B-jets + MET searches (stops and sbottoms).
- Leptons + MET searches (EW production of chargino/neutralino/slepton).

Furthermore, I will discuss the general coverage of SUSY phase space and one additional interesting analysis (general NP search).

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

ATLAS & CMS search overview

Not covered:

Mono- and diphoton searches (see **Toyoko Orimoto**, this afternoon). Long-lived particle searches (see **Tristan Arnoldus du Pree**, this afternoon). Mono jet searches (see **Valerio Rossetti**, Thursday afternoon). Mono W/Z searches (see **Andy Nelson**, Thursday afternoon).

...and of course much more!

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

Gluinos and squarks:
Locus jets + MET

$$\frac{g_{2}}{(b_{1}\gamma^{\mu}b_{1}W_{1}^{\mu}+b_{1}\gamma^{\mu}a_{2}W_{2})} = \frac{g_{1}W_{1}}{(b_{1}\gamma^{\mu}b_{1}W_{1}^{\mu}+b_{1}\gamma^{\mu}a_{2}W_{2})} = \frac{g_{1}W_{1}}{(b_{1}\gamma^{\mu}b_{1}W_{1}^{\mu}+b_{1}\gamma^{\mu}a_{2}W_{2})} = \frac{g_{1}W_{1}}{(b_{1}\gamma^{\mu}b_{1}W_{1}^{\mu}+b_{1}\gamma^{\mu}a_{2}W_{2})} = \frac{g_{1}W_{1}}{(b_{1}\gamma^{\mu}b_{1}W_{1}^{\mu}+b_{1}\gamma^{\mu}a_{2}W_{2})} = \frac{g_{1}W_{1}}{(b_{1}\gamma^{\mu}b_{2}W_{2}^{\mu}+b_{1}\gamma^{\mu}b_{2}W_{2}^{\mu}+b_{1}\gamma^{\mu}a_{2}W_{2})} = \frac{1}{2}|\partial_{\mu}W_{1}^{\mu}-\partial_{\nu}W_{1}^{\mu}+b_{1}\gamma^{\mu}a_{2}W_{2}^{\mu}+b_{2}W_{2}^$$

 $rac \pi^*$

Monday, June 23, 14

 μ^{+}

 e^+

Inclusive jets + MET

The 8 TeV analyses in ATLAS & CMS searching for squarks and gluinos are:

1405.7875	20.3 fb ⁻¹	2-6 jets + MET
1404.2500	20.3 fb ⁻¹	2 SS leptons/3 leptons + MET + b-tag
1308.1841	20.3 fb ⁻¹	7-10 jets + MET
ATLAS-CONF-2013-89	20.3 fb ⁻¹	2 leptons + jets + MET
ATLAS-CONF-2013-62	20.3 fb ⁻¹	1-2 leptons + 3-6 jets + MET
ATLAS-CONF-2013-61	20.1 fb ⁻¹	3 b-jets + MET
ATLAS-CONF-2013-26	21.0 fb ⁻¹	1 tau + jets + MET
1402.4770	19.5 fb ⁻¹	3-8 jets + MET
1311.6736	19.3 fb ⁻¹	Lepton + jets + b-tag
PAS-SUS-12-015	19.3 fb ⁻¹	Lepton + jets + b-tag
PLB 725 243, 1305.2390	19.4 fb ⁻¹	3+ jets + MET + b-tag
PAS-SUS-13-019	19.5 fb ⁻¹	Jets + b-tag, MT2 variable

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

Inclusive jets + MET

The 8 TeV analyses in ATLAS & CMS searching for squarks and gluinos are:

1405.7875	20.3 fb ⁻¹	2-6 jets + MET
1404.2500	20.3 fb ⁻¹	2 SS leptons/3 leptons + MET + b-tag
1308.1841	20.3 fb ⁻¹	7-10 jets + MET
ATLAS-CONF-2013-89	20.3 fb ⁻¹	2 leptons + jets + MET
ATLAS-CONF-2013-62	20.3 fb ⁻¹	1-2 leptons + 3-6 jets + MET
ATLAS-CONF-2013-61	20.1 fb ⁻¹	3 b-jets + MET
ATLAS-CONF-2013-26	21.0 fb ⁻¹	1 tau + jets + MET
1402.4770	19.5 fb ⁻¹	3-8 jets + MET
1311.6736	19.3 fb ⁻¹	Lepton + jets + b-tag
PAS-SUS-12-015	19.3 fb ⁻¹	Lepton + jets + b-tag
PLB 725 243, 1305.2390	19.4 fb ⁻¹	3+ jets + MET + b-tag
utill compidentles "clossic	"CUICY at an	structure alight datail and averaged from th

Twill consider the "classic" SUSY signature in slight detail and expand from there. These assume the R-parity is conserved and neutralino is the LSP!

TROELS C. PETERSEN (NBI)

ATLAS inclusive jets + MET

Search uses **15 inclusive signal regions** (SR) along with **60 control regions** (CR, 4 CR per SR [γ ,Q,W,T]) and **135 validation regions** (VR, 9 VR per SR).

Events are selected on the basis of E_T^{miss} and $m_{\text{eff}} = \sum p_T(jet) + E_T^{\text{miss}}$ Lepton veto is applied to all SR. jetsdt = 20.3 fb⁻¹, \s=8TeV ATLAS 0.5 Background estimates in SR obtained 2im -0.1 0.5 -1.0 0.8 0.9 from data by transfer factors: 1.4 2jt 2ь 0.3 0.5 -0.5 1.2 2jW -0.6 -1.0 0.5 0.4 1.9 0.6 0.2 $N(SR, scaled) = N(CR, obs) \times \left[\frac{N(SR, unscaled)}{N(CR, unscaled)}\right]$ regions Significance 3i -0.2 -1.0 0.4 0.9 -0.2 0.0 0.9 -1.4 To assure accuracy, validity is tested 0.3 0.8 in VRs. Largest discrepancy is 2.4σ σ 0.6 -0.1 (13 events compared 6.1±1.3 exp.) 1.6 0.5 in the Z-VR of the 5j SR. 0.2 0.2 0.7 -2 6in 0.8 0.2 0.7 6i 0.5 1.2 0.0 1.0 -0.5 6it+ VRT VRTv VRT_T VRQa VRQb Validity categories TROELS C. PETERSEN (NBI) PAGE 8/25 ASTROPARTICLE 2014

ATLAS inclusive jets + MET Two example (2j-loose and 6j-very tight) distributions of effective mass: Events / 100 GeV Events / 100 GeV ATLAS ATLAS 10⁵ dt = 20.3 fb = 20.3 fb SR - 6jt+ SR - 2jl Data 2012 (1s = 8 TeV) Data 2012 (ts = 8 TeV) M Total SM Total 10⁴ ag m(g)=475.m(y^o)=425 ag m(g)=465.m(y1)=385.m(y2 qq m(q)=1000,m(z⁰)=100 aa m(q)=1265,m(y1)=945,m(y0)= Multi-jets Multi-jets 10³ W+jets W+jets t(+X) & single top fi(+X) & single top 10 b Diboson 10² Diboson 10 Data / MC Data / MC 2.5 2.5 2 2 1.5 1.5 0.5 0.53500 4000 500 4000 men(incl.) [GeV] m_{eff}(incl.) [GeV]

The other 13 Signal Regions also see no excesses...

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

ATLAS inclusive jets + MET

Two example limit plots (out of 14), using best exp. SR for each hypothesis: Left: Exclusion limits for mSUGRA/CMSSM models. Right: Exclusion limits for a simplified phenomenological MSSM scenario.

In simplified models we exclude gluinos with masses up to ~1.3 TeV and squarks with masses up to 850 GeV.

Note: It is interesting to note the strong dependence on the Higgs mass in the mSUGRA/CMSSM model.

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

PAGE 10/25

CMS inclusive jets + MET

A loose baseline selection is applied:

- Minimum 3 jets with pT > 50 GeV and $|\eta| < 2.5$. $H_T = \sum p_T$
- $H_T > 500 \text{ GeV}.$
- Missing $H_T > 200$ GeV.
- 3 highest pT jets do not align with missing H_T.

• Lepton veto.

11753 events are divided into **36 exclusive SR** (Njets, H_T and missing H_T). The background is evaluated in a similar data-driven way to ATLAS.

	Selection	ı	$Z \to \nu \overline{\nu}$	tī/W	tī/W	QCD	Total	Data
NJets	$H_{\rm T}$ [GeV]	∦ _T [GeV]		\rightarrow e, μ +X	$\rightarrow \tau_h{+}X$		background	
3–5	500-800	200-300	1821 ± 387	$2211{\pm}448$	$1749{\pm}210$	307±219	$6088{\pm}665$	6159
3–5	500-800	300-450	994±218	660 ± 133	590±69	35±24	2278 ± 266	2305
3–5	500-800	450-600	273±63	77±17	$66.3{\pm}9.5$	$1.3^{+1.5}_{-1.3}$	$418{\pm}66$	454
3–5	500-800	>600	42 ± 10	$9.5{\pm}4.0$	5.7 ± 1.3	$0.1^{+0.3}_{-0.1}$	57.4 ± 11.2	62
3–5	800-1000	200-300	216±46	278±62	192±33	92±66	777±107	808
3–5	800-1000	300-450	124 ± 26	113 ± 27	84±12	9.9±7.4	$330{\pm}40$	305
3–5	800-1000	450-600	47±11	$36.1 {\pm} 9.9$	24.1 ± 3.6	$0.8^{+1.3}_{-0.8}$	108 ± 15	124
3–5	800-1000	>600	35.3 ± 8.8	9.0±3.7	$10.3{\pm}2.0$	$0.1^{+0.4}_{-0.1}$	54.8 ± 9.7	52
3–5	1000-1250	200-300	76±17	104±26	66.5±9.9	59±25	$305{\pm}41$	335

TROELS C. PETERSEN (NBI)

Monday, June 23, 14

ASTROPARTICLE 2014

jets

 $H_T = |\vec{H_T}| = |-\sum \vec{p_T}|$

CMS inclusive jets + MET

The resulting distributions are compared to estimated background:

CMS, L = 19.5 fb⁻¹, \s = 8 TeV

TROELS C. PETERSEN (NBI)

ATLAS & CMS inclusive jets + MET

The ATLAS & CMS searches covered are just one of a whole array with increasing number of leptons and b-tags.

The SUSY scenarios covered in this way are many!

Summary of CMS SUSY Results* in SMS framework

SUSY 2013

$$Stops: b-jets + CTET$$

$$C_{UV} = \sum (\Psi/(1^{N}\partial)(P_{1} - Q_{1})\Psi/P_{1} + Q_{2})W_{1}^{T} + Q_{2}W_{1}^{T} + Q$$

Exclusion plots for direct stop searches are shown (3 ATLAS + 3 CMS analysis).

There is quite some structure to them...

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

Exclusion plots for direct stop searches are shown (3 ATLAS + 3 CMS analysis).

There is quite some structure to them, which comes from the kinematically allowed decays of the stops and the (large) SM backgrounds near the boundaries.

TROELS C. PETERSEN (NBI)

Exclusion plots for direct stop searches are shown (3 ATLAS + 3 CMS analysis).

There is quite some structure to them, which comes from the kinematically allowed decays of the stops and the (large) SM backgrounds near the boundaries.

TROELS C. PETERSEN (NBI)

 M_R

The razor variables M_R and R are defined studying the dijet topology resulting from the production of two squarks, each decaying to a quark and a stable neutralino [CMS SUS-13-004].

$$M_R \equiv \sqrt{(p_{j_1} + p_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

$$M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j_1} + p_T^{j_2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j_1} + \vec{p}_T^{j_2})}{2}}$$

$$R \equiv$$

Defining **9 signal regions**, the baseline selection is:

- With leptons:
- $M_R > 300 \text{ GeV}, R^2 > 0.15$ • Without leptons:

 $M_R > 400 \text{ GeV}, R^2 > 0.25$

M_R and R tends to be a peaking function for signal and a smooth falling function for background.

		Requir	ements	
Box	lepton	b-tag	kinematic	jet
		Dilepto	n Boxes	
MuEle	≥ 1 tight electron and ≥ 1 loose muon	$\geq 1 \text{ b-tag}$	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and $(M_R > 450 \text{ GeV or } R^2 > 0.2)$	≥ 2 jets
MuMu	≥ 1 tight muon and ≥ 1 loose muon	\geq 1 b-tag	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and $(M_R > 450 \text{ GeV or } R^2 > 0.2)$	\geq 2 jets
EleEle	≥ 1 tight electron and ≥ 1 loose electron	\geq 1 b-tag	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and $(M_R > 450 \text{ GeV or } R^2 > 0.2)$	\geq 2 jets
		Single Lep	ton Boxes	
MuMultiJet ≥ 1 tight muon		$\geq 1 b$ -tag	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and $(M_R > 450 \text{ GeV or } R^2 > 0.2)$	\geq 4 jets
MuJet	\geq 1 tight muon	\geq 1 b-tag	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and $(M_R > 450 \text{ GeV or } R^2 > 0.2)$	2 or 3 jets
EleMultiJet	≥ 1 tight electron	$\geq 1b\text{-tag}$	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and $(M_R > 450 \text{ GeV or } R^2 > 0.2)$	\geq 4 jets
EleJet	≥ 1 tight electron	\geq 1 b-tag	$(M_R > 300 \text{ GeV and } R^2 > 0.15)$ and $(M_R > 450 \text{ GeV or } R^2 > 0.2)$	2 or 3 jets
		Hadron	ic Boxes	-
MultiJet	none	$\geq 1 b$ -tag	$(M_R > 400 \text{ GeV and } R^2 > 0.25) \text{ and}$ $(M_R > 550 \text{ GeV or } R^2 > 0.3)$	\geq 4 jets
2b-Jet	none	$\geq 2b\text{-tag}$	$(M_R > 400 \text{ GeV and } R^2 > 0.25)$ and $(M_R > 550 \text{ GeV or } R^2 > 0.3)$	2 or 3 jets

ASTROPARTICLE 2014

The razor variables M_R and R are defined studying the dijet topology resulting from the production of two squarks, each decaying to a quark and a stable neutralino [CMS SUS-13-004].

ElectroWeak production: Leptons, jets, MET, etc.

 $\mathcal{L}_{GWS} = \sum (\bar{\Psi}_f (i\gamma^{\mu} \partial \mu - \bar{m}_f) \Psi_f - e Q_f \bar{\Psi}_f \gamma^{\mu} \Psi_f A_{\mu}) +$

 $\approx \pi$

 $\begin{aligned} \frac{g}{2} & \sum_{i=1}^{n} (\tilde{a}_{L}^{i} \gamma^{\mu} b_{L}^{i} W_{L}^{+} + \tilde{b}_{L}^{i} \gamma^{\mu} a_{L}^{i} W_{L}^{-}) + \frac{g}{2c_{W}} \sum_{i=1}^{n} \bar{\Psi}_{i}^{i} \gamma^{\mu} (I_{f}^{3} - 2s_{w}^{2} Q_{f} - I_{f}^{3} \gamma_{5}) \Psi_{f} Z_{\mu} + \\ & -\frac{1}{4} |\tilde{\mu}_{\mu} A_{\nu} - \tilde{\partial}_{\nu} A_{\mu} + ie(W_{\mu} W_{\mu}^{+} - W_{\mu}^{+} W_{\nu}^{-})|^{2} - \frac{1}{2} |\partial_{\mu} W_{\nu}^{+} - \partial_{\nu} W_{\mu}^{+} + \\ & -ie(W_{\mu}^{+} A_{\nu} - W_{\nu}^{+} A_{\mu}) + ig' c_{w} (W_{\mu}^{+} Z_{\nu} - W_{\nu}^{+} Z_{\mu}|^{2} + \\ & -\frac{1}{4} |\partial_{\mu} Z_{\nu} - \partial_{\nu} Z_{\mu}^{-} + ig' c_{w} (W_{\mu}^{-} W_{\nu}^{+} - W_{\mu}^{+} W_{\nu}^{-})|^{2} + \\ & \frac{11}{2} |M_{\gamma}^{2} \eta^{2} - \frac{g M_{\eta}^{2}}{8M_{W}} \eta^{3} - \frac{g'^{2} M_{\eta}^{2}}{32 M_{W}} \eta^{4} + |M_{W} W_{\nu}^{+} + \frac{g}{2} \eta W_{\mu}^{+}|^{2} + \\ & +\frac{1}{2} |\partial_{\mu} \eta + i M_{Z} Z_{\mu} + \frac{ig}{2c_{w}} \eta Z_{\mu}|^{2} - \sum_{f} \frac{g}{2} \frac{m_{f}}{M_{W}} \bar{\Psi}_{f} \Psi_{f} \eta \end{aligned}$

Monday, June 23, 14

μÌ

ElectroWeak SUSY production Searching for charginos, neutralinos, and sleptons

EW SUSY provides "toughest" but perhaps also most interesting SUSY window. With assumptions, there are 9 parameters: $M_1, M_2, \mu, \tan \beta, m_{\tilde{e}_L}^2, m_{\tilde{e}_R}^2, m_{\tilde{\tau}_L}^2, m_{\tilde{\tau}_R}^2, \theta_{\tilde{\tau}}$

Cascade decays to LSP yields many interesting SM particles: Leptons, W/Z, Higgs Maximal reach so far is ~700 GeV, dominated by multilepton channels.

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

Multi-lepton + MET

1404.5801

3 leptons (e, μ , τ) are required to have p_T > 20, 10, 20 GeV (1st, 2nd, and τ _h).

Candidates are then classified according to: Nlepton, Ntau, b-tag, N OSSF, on/off Z, H_T , E_T^{miss}

Largest discrepancy is in 4 lepton, OSSF1, off-Z, one τ_h , no b-tag and $H_T < 200$ GeV: **3** (0.60 ± 0.24), **4** (2.1 ± 0.5) and **15** (7.5 ± 2.0) events observed (expected).

≥4 leptons	mere-	Elisten	$N_{l_{b}} = 0, N_{b} = 0$		N _h	$-1, N_b = 0$	Ca. 1	$-0, N_b \ge 1$	$N_{z_{b}} = 1, N_{b} \ge 1$	
$H_T > 200 \text{ GeV}$		(GeV)	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
OSSF0	_	$(100, \infty)$	0	0.01-0.01	0	0.01-0.0	0	0.02+0.04	0	0.11 ± 0.08
OSSF0	_	(50, 100)	0	0.00+0.02	0	0.01+0.06	0	0.00+0.0	0	0.12 ± 0.07
OSSF0	_	(0, 50)	0	0.00+0.02	0	0.07+0.50	0	0.00+0.02	0	0.02 ± 0.02
OSSF1	Off-Z	(100, ∞)	0	0.01+012	1	0.25 ± 0.11	0	0.13 ± 0.08	0	0.12 ± 0.12
OSSF1	On-Z	$(100, \infty)$	1	0.10 ± 0.06	0	0.50 ± 0.27	0	0.42 ± 0.22	0	0.42 ± 0.19
OSSF1	Off-Z	(50, 100)	0	0.07 ± 0.06	1	0.29 ± 0.13	0	0.04 ± 0.04	0	0.23 ± 0.13
OSSF1	On-Z	(50, 100)	0	0.23 ± 0.11	1	0.70 ± 0.31	0	0.23 ± 0.13	1	0.34 ± 0.16
OSSF1	Off-Z	(0, 50)	0	0.02+0.05	0	0.27 ± 0.12	0	0.03+0.04	0	0.31 ± 0.15
OSSF1	On-Z	(0, 50)	0	0.20 ± 0.08	0	1.3 ± 0.5	0	0.06 ± 0.04	1	0.49 ± 0.19
C88F2	Off-Z	(100, ∞)	0	0.01+0.02	-	_	0	0.01+0.06	-	_
1000	On-Z	(100, ∞)	1	0.15+0.56	-	_	0	0.34 ± 0.18	-	_
CONST	Off-Z	(50, 100)	0	0.03 ± 0.02	-	_	0	0.13 ± 0.09	-	_
O58F2	On-Z	(50, 100)	0	0.80 ± 0.40	-	_	0	0.36 ± 0.19	-	_
OSSF2	CH+Z	(0, 50)	1	0.27 ± 0.13	-	_	0	0.08 ± 0.05	-	_
OSSF2	Cr.C	(2,50)	5	7.4 ± 3.5	-	_	2	0.80 ± 0.40	-	_
≥4 leptons	mere	1000	N _b .	$-0, N_b = 0$	N _h .	$-1, N_b = 0$	N _h .	$-0, N_b \ge 1$	N _R .	$-1, N_b \ge 1$
$H_T < 200 \text{ GeV}$		(en)	C. 2. 4.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
OSSE0	-	$(100, \infty)$	0	0.11 ± 0.08	0	0.17 ± 0.10	0	0.03 000	0	0.04 ± 0.04
OSSF0	-	(50, 100)	0	0.01 10 00	2	0.70 ± 0.33	0	0.00+632	0	0.28 ± 0.16
OSSF0	_	(0, 50)		0.01 ⁺⁶	1	0.7 ± 0.3	0	0.00+012	0	0.13 ± 0.08
OSSF1	Off-Z	$(100, \infty)$	0	2.06 ± 0.04	3	0.60 ± 0.24	0	0.02+034	0	0.32 ± 0.20
OSSF1	On-Z	(100, ∞)	1	0.50 ± 0.13	2	2.5 ± 0.5	1	0.38 ± 0.20	0	0.21 ± 0.10
OSSF1	Off-Z	(50, 100)	0	0.18 ± 0.06	4	2.1 ± 0.5	0	0.16 ± 0.08	1	0.45 ± 0.24
OSSF1	On-Z	(50, 100)	2	1.2 ± 0.3	9	9.6 ± 1.6	2	0.42 ± 0.23	0	0.50 ± 0.16
OSSF1	Off-Z	(0, 50)	2	0.46 ± 0.18	15	7.5 ± 2.0	0	0.09 ± 0.06	0	0.70 ± 0.31
OSSF1	On-Z	(0, 50)	4	3.0 ± 0.8	41	40 ± 10	1	0.31 ± 0.15	2	1.50 ± 0.47
OSSF2	Off-Z	(100, ∞)	0	0.04 ± 0.03	-	_	0	0.05 ± 0.04	-	_
OSSF2	On-Z	$(100, \infty)$	0	0.34 ± 0.15	-	_	0	0.46 ± 0.25	-	_
OSSF2	Off-Z	(50, 100)	2	0.18 ± 0.13	-	_	0	0.02+085	-	_
OSSF2	On-Z	(50, 100)	4	3.9 ± 2.5	-	_	0	0.50 ± 0.21	-	_
OSSF2	Off-Z	(0, 50)	7	8.9 ± 2.4	-	_	1	0.23 ± 0.09	-	_
OSSF2	On-Z	(0, 50)	*156	160 ± 34	-	-	4	2.9 ± 0.8	-	_
E 2014	1							PAGE	20	1/25

4 lepton final states. Similar table for 3 lepton final states

Multi-lepton + MET

1404.5801

3 leptons (e, μ , τ) are required to have p_T > 20, 10, 20 GeV (1st, 2nd, and τ _h).

Candidates are then classified according to: Nlepton, Ntau, b-tag, N OSSF, on/off Z, H_T , E_T^{miss}

Largest discrepancy is in 4 lepton, OSSF1, off-Z, one τ_h , no b-tag and $H_T < 200$ GeV: **3** (0.60 ± 0.24), **4** (2.1 ± 0.5) and **15** (7.5 ± 2.0) events observed (expected).

4 lepto	n final	states.	Similar	table fo	or 3	lepton	final states
>4 leptons	mart.	Epilia No. 1	- 0. N _b - 0	$N_{\rm m} = 1, N_{\rm h} = 0$	0 6.	$-0.N_{h} \ge 1$	$N_{h} = 1, N_{h} \ge 1$

	≥4 leptons	mere-	Elina	$ N_{h_{c}} $	$= 0, N_b = 0$	$ N_{h_{c}} $	$-1, N_b = 0$	C	$= 0, N_b \ge 1$	N.,	$= 1, N_b \ge 1$
	$H_T > 200 \text{ GeV}$		(GeV)	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
	OSSF0	_	(100, ∞)	0	0.01 0 00	0	0.01 0 0	0	0.02 012	0	0.11 ± 0.08
	OSSF0	_	(50, 100)	0	0.00+0.02	0	0.01+0.06	0	0.00+68	0	0.12 ± 0.07
	OSSE0	_	(0, 50)	0	0.00+0.02	0	0.07+0.50	0	0.00+612	0	0.02 ± 0.02
	OSSF1	Off-Z	(100, ∞)	0	0.01+818	1	0.25 ± 0.11	0	0.13 ± 0.08	0	0.12 ± 0.12
	OSSF1	On-Z	(100, ∞)	1	0.10 ± 0.06	0	0.50 ± 0.27	0	0.42 ± 0.22	0	0.42 ± 0.19
	OSSF1	Off-Z	(50, 100)	0	0.07 ± 0.06	1	0.29 ± 0.13	0	0.04 ± 0.04	0	0.23 ± 0.13
	OSSF1	On-Z	(50, 100)	0	0.23 ± 0.11	1	0.70 ± 0.31	0	0.23 ± 0.13	1	0.34 ± 0.16
	OSSF1	Off-Z	(0, 50)	0	0.02+0.03	0	0.27 ± 0.12	0	0.03+0.04	0	0.31 ± 0.15
2	OSSF1	On-Z	(0, 50)	0	0.20 ± 0.08	0	1.3 ± 0.5	0	0.06 ± 0.04	1	0.49 ± 0.19
	C668F2	Off-Z	(100, ∞)	0	0.01+0.02	-	_	0	0.01+0.00	-	_
	1000	On-Z	(100, ∞)	1	0.15+0.55	-	-	0	0.34 ± 0.18	-	-
	CONT	Off-Z	(50, 100)	0	0.03 ± 0.02	-	_	0	0.13 ± 0.09	-	_
	C68F2	On-Z	(50, 100)	0	0.80 ± 0.40	-	_	0	0.36 ± 0.19	-	_
	OSSF2	CH-Z	(0, 50)	1	0.27 ± 0.13	-	_	0	0.08 ± 0.05	-	_
	OSSF2	Cr-L	(2,50)	5	7.4 ± 3.5	-	_	2	0.80 ± 0.40	-	_
	≥4 leptons	mere	1.00	N _b .	$-0, N_b = 0$	N _h .	$-1, N_b = 0$	N _h .	$-0, N_b \ge 1$	N _n	$-1, N_b \ge 1$
	and the second se										
	$H_T < 200 \text{ GeV}$		New Y	6.24	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
	H _T < 200 GeV OSSF0	-	(100, 14)	0	Exp. 0.11 ± 0.08	066	Exp. 0.17 ± 0.10	0	0.03 ¹⁰³⁴	0	Exp. 0.04 ± 0.04
	H _T < 200 GeV OSSF0 OSSF0	=	(100, w) (50, 100)	0	Exp. 0.11 ± 0.08 0.01 + 0.08 0.01 + 0.01	0 0 2	Exp. 0.17 ± 0.10 0.70 ± 0.33	0	0.03 ⁻⁰⁰⁰ 0.00 ⁺⁰⁰⁰ 0.00 ⁺⁰⁰⁰	0	Exp. 0.04 ± 0.04 0.28 ± 0.16
	OSSF0 OSSF0 OSSF0	-	(100, s) (50, 100) (0, 50)		Exp. 0.11 ± 0.08 0.01 ± 0.08 0.01 ± 0.01 0.01 ± 0.01	0 2 1	Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3	000	0.03 000 0.00 000 0.00 000 0.00 000 0.00 000	0 0 0	Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08
	H _T < 200 GeV	 	(100, ∞) (50, 100) (0, 50) (100, ∞)	0000	Exp. 011 ± 0.08 014 + 008 001 + 001 001 + 001 001 + 004	0 2 1 3	Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24	0 0 0 0 0 0	Exp. 0.03 ⁻⁰²⁹ 0.00 ⁺⁰³⁰ 0.00 ⁺⁰³⁰ 0.00 ⁺⁰³⁰ 0.00 ⁺⁰³⁰ 0.02 ⁺⁰³⁴	000000000000000000000000000000000000000	$Exp. 0.04 \pm 0.04 0.28 \pm 0.16 0.13 \pm 0.08 0.32 \pm 0.20$
	055F0 055F0 055F0 055F0 055F1 055F1		(100, ∞) (50, 100) (0, 50) (100, ∞) (100, ∞)		Exp. 011 ± 0.08 011 ± 0.08 011 ± 0.08 0.01 ± 0.04 0.90 ± 0.04 0.90 ± 0.15	0 2 1 3 2	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.7 \pm 0.3 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \end{array}$	0 0 0 0 1	Exp. 0.03 ^{-0.00} 0.00 ^{+0.02} 0.00 ^{+0.02} 0.02 ^{+0.04} 0.02 ^{+0.04} 0.38 ± 0.20	0 0 0 0 0 0	Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10
	H ₁ < 200 GeV OSSF0 OSSF0 OSSF0 OSSF1 OSSF1 OSSF1	 Off-Z On-Z Off-Z	(100, -i) (50, 100) (0, 50) (100, ∞) (100, ∞) (50, 100)	0000000	Exp 011 ± 0.08 01 - 011 001 - 011 0.06 ± 0.04 0.5 ± 0.5 0.18 ± 0.6	0 2 1 3 2 4	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.7 \pm 0.3 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \end{array}$	0 0 0 0 1 0	Exp. 0.03 ⁻¹⁰³⁰ 0.00 ^{+0.02} 0.00 ^{+0.02} 0.02 ^{+0.04} 0.38 ± 0.20 0.16 ± 0.08	0 0 0 0 0 1	Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24
	H _T < 200 GeV OSSF0 OSSF0 OSSF0 OSSF1 OSSF1 OSSF1 OSSF1		$(100; \sim)$ (50, 100) (0, 50) $(100, \infty)$ $(100, \infty)$ (50, 100) (50, 100)	000000	Exp 011 ± 0.08 01 ± 0.08 001 ± 0.04 0.05 ± 0.04 0.18 ± 0.06 1.2 ± 0.3	0 2 1 3 2 4 9	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.7 \pm 0.3 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \end{array}$	0 0 0 0 1 0 2	$\begin{array}{c} \text{Exp.} \\ 0.03 \stackrel{+0.09}{-0.02} \\ 0.00 \stackrel{+0.02}{-0.02} \\ 0.00 \stackrel{+0.02}{-0.02} \\ 0.02 \stackrel{+0.02}{-0.02} \\ 0.38 \pm 0.20 \\ 0.38 \pm 0.20 \\ 0.16 \pm 0.08 \\ 0.42 \pm 0.23 \end{array}$	0bs. 0 0 0 0 1 0	$\begin{array}{c} \text{Exp.} \\ 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \\ 0.45 \pm 0.24 \\ 0.50 \pm 0.16 \end{array}$
	H _T < 200 GeV OSSF0 OSSF0 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1	 Off-Z On-Z Off-Z Off-Z Off-Z	(100; +) (50, 100) (0, 50) (100, ∞) (100, ∞) (50, 100) (50, 100) (0, 50)		$\begin{array}{c} \text{Exp.} \\ 0.11 \pm 0.08 \\ 0.1 \pm 0.08 \\ 0.01 \pm 0.04 \\ 0.08 \pm 0.04 \\ 0.18 \pm 0.6 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \end{array}$	0bs. 0 2 1 3 2 4 9 15	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.7 \pm 0.3 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \\ 7.5 \pm 2.0 \end{array}$	0 0 0 0 1 0 2 0	$\begin{array}{c} \text{Exp.} \\ 0.03 \stackrel{+0.09}{-0.09} \\ 0.00 \stackrel{+0.09}{-0.09} \\ 0.00 \stackrel{+0.09}{-0.09} \\ 0.02 \stackrel{+0.09}{-0.09} \\ 0.038 \pm 0.20 \\ 0.38 \pm 0.20 \\ 0.16 \pm 0.08 \\ 0.42 \pm 0.23 \\ 0.09 \pm 0.06 \end{array}$	0bs. 0 0 0 0 1 0 0	$\begin{array}{c} \text{Exp.} \\ 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \\ 0.45 \pm 0.24 \\ 0.50 \pm 0.16 \\ 0.70 \pm 0.31 \end{array}$
	HT < 200 GeV OSSF0 OSSF0 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1	 Off-Z On-Z Off-Z On-Z Off-Z Off-Z	(100, -) (50, 100) (0, 50) $(100, \infty)$ $(100, \infty)$ (50, 100) (50, 100) (50, 100) (0, 50) (0, 50)		$\begin{array}{c} Exp. \\ 0.11 \pm 0.08 \\ 0.01 \pm 0.01 \\ 0.01 \pm 0.01 \\ 0.05 \pm 0.04 \\ 0.18 \pm 0.06 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \\ 3.0 \pm 0.8 \end{array}$	0 2 1 3 2 4 9 15 41	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.70 \pm 0.3 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \\ 7.5 \pm 2.0 \\ 40 \pm 10 \end{array}$	0 0 0 1 0 2 0 1	$\begin{array}{c} Exp.\\ 0.03 + 0.03\\ 0.00 + 0.02\\ 0.00 + 0.02\\ 0.00 + 0.02\\ 0.02 + 0.02\\ 0.38 \pm 0.20\\ 0.16 \pm 0.08\\ 0.42 \pm 0.23\\ 0.09 \pm 0.06\\ 0.31 \pm 0.15\\ \end{array}$	0 0 0 0 0 0 1 0 0 2	$\begin{array}{c} \text{Exp.} \\ 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \\ 0.45 \pm 0.24 \\ 0.50 \pm 0.16 \\ 0.70 \pm 0.31 \\ 1.50 \pm 0.47 \end{array}$
	H _T < 200 GeV OSSF0 OSSF0 OSSF0 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1	 Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	(100, -) (50, 100) (0, 50) (100, -) (100, -) (50, 100) (50, 100) (50, 100) (0, 50) (0, 50) (100, -)		$\begin{array}{c} \text{Exp.} \\ 0.11\pm 0.08\\ 0.0\pm 0.04\\ 0.0\pm 0.04\\ 0.0\pm 0.04\\ 1.2\pm 0.3\\ 0.46\pm 0.18\\ 3.0\pm 0.8\\ 0.04\pm 0.03\\ 0.04\pm 0.03\\ \end{array}$	0 2 1 3 2 4 9 15 41 	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.7 \pm 0.3 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \\ 7.5 \pm 2.0 \\ 40 \pm 10 \\ \end{array}$	0 0 0 1 0 2 0 1 0	$\begin{array}{c} \text{Exp.}\\ 0.03 \stackrel{[0.08]}{\rightarrow} 0.09 \stackrel{[0.08]}{\rightarrow} 0.00 \stackrel{[0.08]}{\rightarrow} 0.00 \stackrel{[0.08]}{\rightarrow} 0.00 \stackrel{[0.08]}{\rightarrow} 0.02 \stackrel{[0.08]}{\rightarrow} 0.02 \stackrel{[0.08]}{\rightarrow} 0.02 \stackrel{[0.08]}{\rightarrow} 0.03 \pm 0.20 \\ 0.16 \pm 0.08 \\ 0.42 \pm 0.23 \\ 0.09 \pm 0.06 \\ 0.31 \pm 0.15 \\ 0.05 \pm 0.04 \end{array}$	0 0 0 0 0 0 1 0 0 2 	$Exp, 0.04 \pm 0.04 0.28 \pm 0.16 0.13 \pm 0.08 0.32 \pm 0.20 0.21 \pm 0.10 0.45 \pm 0.24 0.50 \pm 0.16 0.70 \pm 0.31 1.50 \pm 0.47$
	HT < 200 GeV OSSF0 OSSF0 OSSF0 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF2 OSSF2	 Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	(100, -1) (50, 100) (0, 50) $(100, \infty)$ $(100, \infty)$ (50, 100) (0, 50) (0, 50) $(100, \infty)$ $(100, \infty)$ $(100, \infty)$	000000000000000000000000000000000000000	$\begin{array}{c} Exp. \\ 0.11 \pm 0.08 \\ 0.91 \pm 0.08 \\ 0.91 \pm 0.01 \\ 0.01 \pm 0.01 \\ 0.18 \pm 0.6 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \\ 0.04 \pm 0.03 \\ 0.04 \pm 0.03 \\ 0.34 \pm 0.15 \\ \end{array}$	0 2 1 3 2 4 9 15 41 	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.72 \pm 0.3 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \\ 7.5 \pm 2.0 \\ 40 \pm 10 \\ \hline \end{array}$	0 0 0 0 1 0 2 0 1 0 0 1 0 0	$\begin{array}{c} \text{Exp.}\\ 0.03 & -0.03\\ 0.00 & -0.00\\ 0.00 & -0.00\\ 0.02 & -0.02\\ 0.08 \pm 0.20\\ 0.16 \pm 0.08\\ 0.42 \pm 0.23\\ 0.09 \pm 0.06\\ 0.31 \pm 0.15\\ 0.05 \pm 0.04\\ 0.46 \pm 0.25\\ \end{array}$	0 0 0 0 0 0 1 0 0 2 	$\begin{array}{c} \text{Exp.} \\ 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \\ 0.45 \pm 0.24 \\ 0.50 \pm 0.16 \\ 0.70 \pm 0.31 \\ 1.50 \pm 0.47 \\ \end{array}$
	HT < 200 GeV OSSF0 OSSF0 OSSF0 OSSF1 OSSF2 OSSF2	 Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	$(100, \circ)$ (50, 100) (0, 50) $(100, \infty)$ $(100, \infty)$ (50, 100) (0, 50) (0, 50) $(100, \infty)$ $(100, \infty)$ $(100, \infty)$ (50, 100)	000000000000000000000000000000000000000	$\begin{array}{c} Exp. \\ 0.11 \pm 0.08 \\ 0.01 \pm 0.08 \\ 0.01 \pm 0.01 \\ 0.01 \pm 0.01 \\ 0.01 \pm 0.04 \\ 0.04 \pm 0.04 \\ 0.18 \pm 0.06 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \\ 0.04 \pm 0.03 \\ 0.04 \pm 0.03 \\ 0.04 \pm 0.03 \\ 0.18 \pm 0.13 \\ 0.18 \pm 0.13 \\ \end{array}$	0 2 1 3 2 4 9 15 41 	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.70 \pm 0.33 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \\ 7.5 \pm 2.0 \\ 40 \pm 10 \\ \hline \\ \end{array}$	0 0 0 0 1 0 2 0 1 0 0 0 0	$\begin{array}{c} \text{Exp.}\\ 0.03 & \text{-}0.03 \\ 0.00 & \text{-}0.01 \\ 0.00 & \text{-}0.02 \\ 0.02 & \text{-}0.02 \\ 0.02 & \text{-}0.02 \\ 0.08 \pm 0.20 \\ 0.16 \pm 0.08 \\ 0.42 \pm 0.23 \\ 0.09 \pm 0.06 \\ 0.31 \pm 0.15 \\ 0.05 \pm 0.04 \\ 0.46 \pm 0.25 \\ 0.02 & \text{-}0.02 \\ 0.02 &$	0 0 0 0 0 1 0 0 2 	$\begin{array}{c} & \text{Exp.} \\ 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \\ 0.45 \pm 0.24 \\ 0.50 \pm 0.16 \\ 0.70 \pm 0.31 \\ 1.50 \pm 0.47 \\ \end{array}$
	H _T < 200 GeV OSSF0 OSSF0 OSSF1 OSSF2 OSSF2 OSSF2	 Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	$(100, \circ)$ (50, 100) (0, 50) $(100, \infty)$ $(100, \infty)$ (50, 100) (50, 100) (0, 50) $(100, \infty)$ $(100, \infty)$ $(100, \infty)$ (50, 100) (50, 100)		$\begin{array}{c} {\rm Exp.} \\ 0.11 \pm 0.08 \\ 0.51 \pm 0.01 \\ 0.01 \pm 0.01 \\ 0.01 \pm 0.01 \\ 0.08 \pm 0.04 \\ 0.28 \pm 0.04 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \\ 0.04 \pm 0.03 \\ 0.34 \pm 0.15 \\ 0.18 \pm 0.13 \\ 3.9 \pm 2.5 \end{array}$	0 2 1 3 2 4 9 15 41 	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.70 \pm 0.33 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \\ 7.5 \pm 2.0 \\ 40 \pm 10 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0	$\begin{array}{c} \text{Exp.}\\ 0.03 & -0.03\\ 0.00 & -0.02\\ 0.00 & -0.02\\ 0.02 & -0.02\\ 0.02 & -0.02\\ 0.02 & -0.02\\ 0.08 \pm 0.20\\ 0.16 \pm 0.08\\ 0.42 \pm 0.23\\ 0.09 \pm 0.06\\ 0.31 \pm 0.15\\ 0.05 \pm 0.04\\ 0.46 \pm 0.25\\ 0.02 & -0.02\\ 0.50 \pm 0.21\\ \end{array}$	0 0 0 0 0 0 1 0 0 2 	$\begin{array}{c} \text{Exp.} \\ 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \\ 0.45 \pm 0.24 \\ 0.50 \pm 0.16 \\ 0.70 \pm 0.31 \\ 1.50 \pm 0.47 \\ \end{array}$
	H _T < 200 GeV OSSF0 OSSF0 OSSF1 OSSF2 OSSF2 OSSF2 OSSF2		(100; 1) (50, 100) (0, 50) $(100, \infty)$ $(100, \infty)$ $(100, \infty)$ (50, 100) (0, 50) (0, 50) $(100, \infty)$ $(100, \infty)$ $(100, \infty)$ (50, 100) (50, 100) (50, 100) (0, 50)	0 0 1 0 7 7 4 0 0 7 4 7	$\begin{array}{c} Exp. \\ 0.11 \pm 0.08 \\ 0.8 \pm 0.08 \\ 0.01 \pm 0.01 \\ 0.01 \pm 0.04 \\ 0.28 \pm 0.04 \\ 0.18 \pm 0.06 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \\ 3.0 \pm 0.8 \\ 0.04 \pm 0.03 \\ 0.34 \pm 0.15 \\ 0.18 \pm 0.13 \\ 3.9 \pm 2.5 \\ 8.9 \pm 2.4 \end{array}$	0 2 1 3 2 4 9 15 41 	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.7 \pm 0.3 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \\ 7.5 \pm 2.0 \\ 40 \pm 10 \\ \\ \\ \\ \\ \\ \\ \\$	0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 1	$\begin{array}{c} \text{Exp.}\\ 0.03 \stackrel{+0.01}{-}0.00 \stackrel{+0.01}{$	0 0 0 0 0 1 0 0 2 	$\begin{array}{c} \text{Exp.} \\ 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \\ 0.55 \pm 0.24 \\ 0.50 \pm 0.16 \\ 0.50 \pm 0.47 \\$
	H _T < 200 GeV OSSF0 OSSF0 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF1 OSSF2 OSSF2 OSSF2 OSSF2 OSSF2 OSSF2 OSSF2 OSSF2	 Off-Z On-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	(100, 10) (100, 10) (0, 50) $(100, \infty)$ $(100, \infty)$ (50, 100) (50, 100) (0, 50) $(100, \infty)$ (50, 100) (50, 100) (50, 100) (0, 50) (0, 50) (0, 50)	0 0 0 1 0 2 2 4 0 0 2 4 7 *156	$\begin{array}{c} Exp. \\ 0.11 \pm 0.08 \\ 0.81 \pm 0.08 \\ 0.01 \pm 0.04 \\ 0.38 \pm 0.04 \\ 0.18 \pm 0.06 \\ 1.2 \pm 0.3 \\ 0.46 \pm 0.18 \\ 3.0 \pm 0.8 \\ 0.04 \pm 0.03 \\ 0.34 \pm 0.15 \\ 0.18 \pm 0.13 \\ 3.9 \pm 2.5 \\ 8.9 \pm 2.4 \\ 160 \pm 34 \end{array}$	0 2 1 3 2 4 9 15 41 	$\begin{array}{c} \text{Exp.} \\ 0.17 \pm 0.10 \\ 0.70 \pm 0.33 \\ 0.70 \pm 0.33 \\ 0.60 \pm 0.24 \\ 2.5 \pm 0.5 \\ 2.1 \pm 0.5 \\ 9.6 \pm 1.6 \\ 7.5 \pm 2.0 \\ 40 \pm 10 \\ \\ \\ \\$	0 0 0 0 1 0 2 0 1 0 0 0 0 1 0 0 1 4	$\begin{array}{c} \text{Exp.}\\ 0.03 & \text{-}0.03 \\ 0.00 & \text{-}0.01 \\ 0.00 & \text{-}0.01 \\ 0.02 & \text{-}0.01 \\ 0.02 & \text{-}0.01 \\ 0.02 & \text{-}0.01 \\ 0.02 & \text{-}0.01 \\ 0.01 & \text{-}0.0$	0 0 0 0 0 1 0 0 2 	Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47

4-lepton + MET

Analysis covers 5 RPV and 3 RPC models (along with 2 GGM models).

9 Signal Regions are defined according the N leptons, Z-veto and MET.

Monday, June 23, 14

Stau

1405.5086

Example:

p

Slepton model

4-lepton + MET

Monday, June 23, 14

1405.5086

Higgsino search

<u>SUSY scenario</u>: $\tilde{\chi}_{1}^{0}$ lightest higgsino and \tilde{G} is LSP (each Higgs boson H decays to b-quarks).

on a/a

3.5

Selection:

4-5 jets, 2+ jets $p_T > 50$ GeV and MET significance, $S_{MET} > 30$ No isolated leptons (e,μ,τ) or tracks with pT > 10 GeV! $\Delta \phi$ (jet, MET)_{min} > 0.3 (0.5) for S_{MET} > 50 (50 > S_{MET} > 30)

CMS Preliminary, L = 19.3 fb⁻¹, 1s = 8 TeV

m_+ ~ m_- ~ m_+; m_+ ~

higgs ones) are set.

Expected ± 1 σ_{ma}

• Expected ± 2 of

Observed

No significant signal is seen, and

limits (not unlike our "old" SM

TROELS C. PETERSEN (NBI)

PAS-SUS-13-022

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

н

ASTROPARTICLE 2014

PAGE 22/25

Higgsino mass m . (GeV)

$$Generalized search$$

$$C_{UV} = (V(1^{u})\partial_{U} + i\eta_{1})\Psi_{1} - \partial_{Q}\Psi_{1}\gamma^{\mu}\Psi_{1}A_{\mu}) + \frac{1}{2}|\partial_{\mu}\chi_{\mu} - \partial_{Q}\Psi_{\mu} + i\eta_{2}\chi_{\mu} + \frac{1}{2}|\partial_{\mu}\chi_{\mu} - \partial_{Q}\Psi_{\mu} + i\eta_{2}\chi_{\mu} + \frac{1}{2}|\partial_{\mu}\chi_{\mu} - \partial_{Q}\Psi_{\mu} + i\eta_{2}\chi_{\mu} + \frac{1}{2}|\partial_{\mu}\chi_{\mu} - \partial_{\mu}\chi_{\mu} + \frac{1}{2}|\partial_{\mu}\chi_{\mu} + \frac{1}{2}|\partial_{\mu}\chi_{\mu$$

General new physics search

<u>Idea:</u> "Automate" SM background estimate for final states, and compare with data.

<u>Objects:</u> e, μ, γ, jets, b-jets, MET. p_T > 25, 25, 40, 50, 50, 150.

<u>Observables:</u> Invariant mass, effective mass and MET.

<u>Backgrounds:</u> Estimated by reweighted MC, except fake lepton rate (from data).

<u>Signal Regions (SR)</u>: 697 in total! All regions with SM expectation > 0.1 event are considered.

ATLAS-CONF-2014-006

TROELS C. PETERSEN (NBI)

General new physics search

Conclusions

Many SUSY searches performed - SUSY was **NOT** "just around the corner"! Limits have already been pushed very far - the work impresses me much.

LHC Run2 might provide the only real chance of observing SUSY! With Run1 experience, we're ready to maximize our reach...

Conclusions

Many SUSY searches performed - SUSY was **NOT** "just around the corner"! Limits have already been pushed very far - the work impresses me much.

LHC Run2 might provide the only real chance of observing SUSY! With Run1 experience, we're ready to maximize our reach...

Maybe we are just chasing ghosts...

...but it's the "maybe" that keeps the chase on.

TROELS C. PETERSEN (NBI)

ASTROPARTICLE 2014

PAGE 25/25

Additional Higgses & BaryoGenesis

Assume the addition of one additional Higgs singlet, which mixes with the SM Higgs (sin θ). Does this allow for a first order phase transition? [PRL or 1305.4362]

ATLAS inclusive jets + MET

Requirement	Signal Region								
Requirement	2jl	2jm	2jt	2jV	v 🛛	3j		4jW	
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$					160				
$p_{\rm T}(j_1) [{\rm GeV}] >$		130							
$p_{\rm T}(j_2)$ [GeV] >		60							
$p_{\rm T}(j_3) [{\rm GeV}] >$	- 60 40								
$p_{\rm T}(j_4)$ [GeV] >			-					40	
$\Delta\phi(\mathrm{jet}_{1,2,(3)},\mathbf{E}_\mathrm{T}^\mathrm{miss})_\mathrm{min}>$					0.4				
$\Delta \phi(\text{jet}_{i>3}, \mathbf{E}_{T}^{miss})_{min} >$	- 0.2								
W candidates	-			2(W -) (<i>i</i> +	-	$(W \rightarrow j$	i) + (W	$\rightarrow jj$)
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$ [GeV ^{1/2}] >	8 15						-		
$E_{T}^{miss}/m_{eff}(N_j) >$		-		0.23	5	0.3		0.35	
$m_{\rm eff}$ (incl.) [GeV] >	800	1200	1600	180	2200		1100		
Provinement		Signal Region							
Requirement	4jl-	4j1	4jm	4jt	5j	6jl	6jm	6jt	6jt+
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$					160				
$p_{\rm T}(j_1) [{\rm GeV}] >$					130				
$p_{\rm T}(j_2)$ [GeV] >					60				
$p_{\rm T}(j_3) [{\rm GeV}] >$					60				
$p_{\rm T}(j_4) [{\rm GeV}] >$					60				
$p_{\rm T}(j_5)$ [GeV] >			-				60		
$p_{\rm T}(j_6) [{\rm GeV}] >$			-					60	
$\Delta \phi(\text{jet}_{1,2,(3)}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$					0.4				
$\Delta \phi(\text{jet}_{i>3}, \mathbf{E}_{T}^{\text{miss}})_{\text{min}} >$					0.2				
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} \ [\mathrm{GeV}^{1/2}] >$	1	10				-			
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$		_	0.4	0.25		0.2		0.25	0.15
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	700	1000	1300	2200	1200	900	1200	1500	1700

Event selection for the 15 signal regions...

Perhaps still the best estimate of what lies beyond...