

Fermi Large Area
Telescope
Observations of
High-energy
Gamma-ray emission
From solar flares

Melissa Pesce-Rollins INFN-Pisa melissa.pesce.rollins@pi.infn.it

on behalf of the *Fermi*-LAT collaboration

TeVPa/IDM June 23, 2014

The Fermi Space Telescope

Gamma-ray Solar flares

γ -ray emission from Solar flares

Produced by interactions of high-energy particles with ambient plasma:

- 1. Bremsstrahlung
 - ▶ 10 keV 1 GeV
- 2. Nuclear de-excitation
 - ► ≈0.5 8 MeV
- 3. Pion decay
 - ▶ >10 MeV
- ► Magnetic reconnection believed to be at the origin of particle acceleration in Solar flares
- $ightharpoonup \gamma$ -rays provide clues on the properties of the acceleration mechanisms and information on ambient plasma
 - Chromospheric ion abundances
 - Maximum energy of the accelerated charged particles
 - Coronal trapping times

Why study Solar flares with Fermi?

Classification	Deal: fl at 100 000 and
Classification	Peak flux at 100-800 pm
	(Watts m^{-2})
А	< 10 ⁻⁷
В	10 ⁷ –10 ⁶
С	10 ⁶ -10 ⁵
M	10 ⁵ -10 ⁴
X	$10^4 - 10^3$

- Only 9 Solar flares have been detected with E>25 MeV prior to the launch of Fermi
 - All of which were classified as GOES X class flares
- ► Fermi has detected more than 40 Solar flares with E>25 MeV in first 6 years of mission
 - More than half are classified as GOES M class flares

Why study Solar flares with Fermi?

- ► Only 9 Solar flares have been detected with E>25 MeV prior to the launch of *Fermi*
 - All of which were classified as GOES X class flares
- ► Fermi has detected more than 40 Solar flares with E>25 MeV in first 6 years of mission
 - More than half are classified as GOES M class flares
- ► Sampling a wider range of Solar flares providing a new piece to the puzzle of the acceleration mechanisms at work

FERMI LAT AS A SOLAR OBSERVATORY

The LAT standard analysis

- ► Likelihood fit of spatial and spectral model of region around sun
- ► Event classification (photon v. bkg) on event-by-event basis
 - ▶ Use classification trees to reject bkg and give high-quality photon data
- ▶ High flux of hard x-rays during solar flares causes pile-up in the ACD
 - ► High probability of mis-classifying good photons as background

The LAT Low Energy (LLE) analysis

- ► Useful only for short transients (10s of minutes or less)
- Model the background by fitting time series of LAT events from region around sun
- ► Relaxed event classification gives high effective area but lower signal to noise
- Immune to the pile-up effect in the ACD!

IMPULSIVE FLARES: SOL2010-06-12T00:57

- Narrow and broad nuclear line emission detected by GBM
 - ▶ Protons and ions accelerated above ~30 MeV
- ► Emission up to ~400 MeV detected by LAT
 - What physical process?
- ► Fit GBM and LAT to investigate the origin
 - Pion decay radiation
 - Bremsstrahlung from power-law electron spectrum

Parameter	Value
Power-law index (blue)	3.31
Power-law with exp cutoff (cyan)	≤ 1.2 2.4 ± 0.8 MeV
Pion decay (top panel)	-4.5
Power-law at 30 MeV	1.9±0.2

TIMING GAMMA-RAYS AND HARD X-RAYS: SOL2010-06-12T00:57

Implications of time profiles

- protons and/or electrons reach E>100 MeV w/in few seconds of the time it takes electrons to reach 100's of keV
- Acceleration time scales of >100 MeV particles is similar to 100's of keV electrons, but delayed by ≈10 sec

- ► Electron dominated GBM/BGO 100–500 keV counting rates at 320 sec resolution
- ► LAT LLE >30 MeV at 3 second resolution
- ► LLE profile is delayed relative to HXR profile
 - Weak evidence for double-peaked profile
- ► From a cross correlation analysis we find >30 MeV emission lags the bremsstrahlung by 6±3 seconds

SUSTAINED EMISSION: SOL2012-03-07

Protons (30-50 MeV)

→ Protons (>100 MeV)

Protons (50-100 MeV)

- Fermi-LAT detected >100 MeV emission for more than 20 hours
- Including the most energetic photon (4.5 GeV) ever detected during a flaring episode

8 / 18

- High-energy gamma-ray spectrum is curved, consistent with:
 - Pion decay spectrum, or
 - Electron spectrum with cutoff

Localizing the high energy gamma-rays

SOL2012-03-07

- ► Localization studies provide insight to the source of the accelerated particles
- We measure the direction of the emission centroid via a likelihood analysis
- ► For the brightest flares we find the >100 MeV emission centroid to be consistent with location of the active region on the solar disk

elescope

How to explain the long duration >100 MeV emission?

- Continuous acceleration at flare reconnection region via Stochastic acceleration (Petrosian & Liu 2004)
- Accelerated particle spectra become softer as turbulence weakens.
- ► Can explain the spectral evolution seen for SOL2012-03-07

- Coronal Mass Ejection-driven shock (Murphy et al. 1987) can accelerate particles
- $ightharpoonup \gamma$ emission cannot occur at CME site (density too low)
- Particles must travel back to the Sun
- ► Could explain long lasting emission

Complementary EUV and HXR data

- ► M1.5 *GOES* class flare erupted at 7:01:00 UT
- ► EUV and HXR data reveal that the active region is ~8° behind the visible Solar limb at the time of the flare
- ► HXR footpoints were occulted during RHESSI coverage

FIRST >100 MeV Behind the Limb flare

- ► Surprising >100 MeV emission detected by *Fermi*-LAT from 7:10 UT for ~30 min
 - ► Including a ~3 GeV photon
 - ► LAT emission centroid coincides with the flaring region location
- ► How to explain this LAT detection?
- γ's produced in the Corona or photosphere?

Farth

Paper in preparation

IMPROVEMENTS WITH PASS8

- 1. Increase in Pass8 effective area for low energies will greatly improve the Solar flare detection capabilities
- 2. We have also developed a Solar flare dedicated event selection
 - Will alleviate the pile-up effect often present during impulsive Solar flares
 - ▶ Increase the number of Solar flares sample for localization studies

SUMMARY

March 15, 2012 Astronomy picture of the day http://apod.nasa.gov/apod/ap120315.html

► The Fermi-LAT has detected high energy gamma-rays more than 40 solar flares

- ► Almost half of which are GOES M class
- Sampling both impulsive and sustained emission
- Opening a new high-energy window for Solar physics!
- ► Data and tools are publicly available!
 - http://heasarc.gsfc.nasa.gov/ W3Browse/fermi/fermille.html
 - http://hesperia.gsfc.nasa.gov/
 fermi_solar/
 - http://fermi.gsfc.nasa.gov/ssc/
 data/analysis/

Stay tuned for more exciting Solar results from the Fermi Space Telescope!

BACKUP SLIDES

FERMI LAT SOLAR FLARE PUBLIC DATA

Fermi LLE public data

- LLE catalog of Solar flares and GRBs
- ► 6 impulsive solar flares and 29 GRBs
- http://heasarc.gsfc.nasa.gov/W3Browse/ fermi/fermille.html
- All LLE data products publicly available
 - LLE event file
 - spectrum files (PHAII,PHAI and RSP)
 - Quick look files
- LLE data can be analyzed with XSPEC and rmfit

Fermi LAT SunMonitor

S. Start Search Reset Plot Results

- ► Fermi-LAT SunMonitor continuously monitors the Sun
- http://hesperia.gsfc.nasa.gov/ fermi_solar/
- http: //www.asdc.asi.it/gbmsolar/

March 7, 2011 M3.7 class flare

LEPTONIC VS. HADRONIC EMISSION PROCESSES

- ► For the SOL2011-03-07, SOL2011-06-7 and SOL2012-03-07 flares a power-law with exponential cutoff provides a better fit to the data than a simple power-law
- ► A challenge for the leptonic scenario?
 - ► High energy electrons would loose most of their energy in sub-mm, far IR via synchrotron
 - A multiwavelength analysis is necessary in order to rule out this scenario
- ► Hadronic scenario for these flares seems more plausible
 - In good agreement with data
- ► The proton spectral index inferred from the pion decay templates is >4 in all three cases
 - Hard to soft spectral evolution for March 7, 2011 and 2012 flares
 - ▶ New clues for the underlying acceleration mechanisms?

Long duration flare of June 7, 2011

- Sustained emission associated to impulsive M2.5 X-ray flare
- ► Accompanied by fast CME (~1250 km/s)
- ► ~36 minutes of >100 MeV gamma-ray emission detected with Fermi LAT
- ► Peak flux $(3.4\pm0.2\times10^{-5} \text{ph s}^{-s} \text{cm}^{-2})$