

Mono-W/Z searches in ATLAS and CMS

Andy Nelson (University of California, Irvine) for the ATLAS and CMS collaborations

Dark Matter

- After Higgs discovery, dark matter is the best motivated new physics search at the LHC
- Astrophysical observations have indicated the existence of a new type of matter, but never been directly observed
 - Galactic rotation curves
 - Orbits in galaxy clusters
 - Gravitational lensing
- Could be produced at the LHC: stable, weakly interacting, neutral particle

Outline

- Dark matter using W/Z+Missing Transverse Energy (MET):
 - Produced through qqχχ or ZZχχ interaction. Heavy particle mediates the interaction
 - For mono-W constructive and destructive interference in the qqχχ interaction is considered
- mono-W/Z (ATLAS)
 - Leptonic decay only mono-Z
 - Hadronic decay mono-W/Z
- mono-W leptonic (CMS)

mono-Z leptonic

ATLAS: 1404.0051, PRD

Production of DM at colliders

- Need a visible particle in the final state
- qqχχ ISR EFT is very similar to direct detection
 - Visible particle is emitted as ISR from the quarks
- Strong ISR are dominant → mono-jet is the most sensitive to diagram
 - Mono-photon, mono-W/Z add only a small portion of sensitivity for this diagram
- But there are other diagrams

Production of DM in the mono-Z channel

- What if dark matter interacts primarily through electroweak bosons?
- mono-W/Z will be the most sensitive channels to dark matter
- First collider limits on this model
- Separate UV complete model:
 - Additional model with a scalar mediator η
- See Andrea de Simone and Thomas Jacques' talk for the limitations of EFTs

Signal Samples

- We have many types of signal samples which have different MET behavior.
- ISR EFT
 - D1: Scalar, spin-independent
 - D5: Vector in Lorentz sense, spinindependent
 - D9: Tensor, spin-dependent
- ZZXX EFT (DM directly interacts with pairs of EWK bosons)
 - 5 dimensional
 - 7 dimension w/ maximal and minimal γ^{*} contribution
- UV complete: η mediator theory

Signal Samples

- We have many types of signal samples which have different MET behavior.
- ISR EFT
 - D1: Scalar, spin-independent
 - D5: Vector in Lorentz sense, spinindependent
 - D9: Tensor, spin-dependent
- ZZXX EFT (DM directly interacts with pairs of EWK bosons)
 - 5 dimensional
 - 7 dimension w/ maximal and minimal γ^{*} contribution
- UV complete: η mediator theory

Four different signal regions with different MET thresholds

Analysis Strategy

- dilepton + MET channel
 - 2 oppositely-charged same-flavor leptons
 - 15 GeV Z boson mass window (76-106 GeV)
- EFT operators have different MET shapes. Four signal regions
 - MET>150, 250, 350, and 450 GeV
- Reduce background
 - Jet veto
 - Δφ(Z,MET)>2.5
 - $|MET-p_T^{\parallel}|/p_T^{\parallel} < 0.5$ (fractional p_T difference)
 - Veto events with an extra lepton
 - |η["]|<2.5

MET

Kinematics

Collider limits

- M* → inversely proportional to coupling
- Region <u>below</u> line excluded

- Limits range over an order of magnitude depending on the operator under consideration
 - Free parameters: m_x, scale M*

Direct detection limits

- Transform limits on the EFT scale, M*, into direct detection cross sections
- Complementary to the direct detection searches

Limits on UV complete model

- UV complete model has more parameters than the EFT
 - coupling, f
 - mass of mediator, n
 - mass of dark matter m_{y}
- Compared upper limit from collider to lower limit from relic density
- Certain points have a *upper limit* higher than *lower limit* from relic density: 51200 excluded

mono-W/Z hadronic

ATLAS: 1309.4017, PRL

Production of DM in the Mono-W channel

- Mono-W is the dominant production mechanism of DM if the up and down couplings have opposite signs
 - Interfere constructively
 - C(u) = -C(d)
- Previous mono-X searches consider the couplings to be equal
 - C(u)=C(d)
- If DM is discovered at the LHC mono-W allows the opportunity to determine coupling to upand down-quarks

Mono-Fat-jet

Fat jet

- Fat-jet + MET channel
 - 1 large radius jet, r=1.2
 - p_T>250 GeV
 - 50 GeV<m_{jet}<120 GeV
- EFT operators have different MET shapes. Two signal regions
 - MET>350 and 500 GeV
- Reduce background
 - $-\sqrt{y} = \min(p_{\mathrm{T1}}, p_{\mathrm{T2}})\Delta R/m_{\mathrm{jet}}$ >0.4
 - Reject events with more than 1 narrow jet (r=0.4) with $p_T>40$ GeV and $|\eta|<4.5$
 - Reject events with any narrow jets with Δφ(MET,jet)<0.4
 - Veto events with electrons, muons, or photons with $p_T > 10 \text{ GeV}$

MET

Kinematics

- Limits are set using predicted shape of the m_{jet} distribution
 - Upper distribution shows the MET>350 GeV signal region, bottom shows MET>500 GeV
 - $M^* = 1 \text{ TeV}$, and $m_{\chi} = 1 \text{ GeV}$
- Data is in good agreement with predicted background

Collider limits M_{*} [GeV] **ATLAS** 20.3 fb⁻¹ $\sqrt{s} = 8$ TeV D9:obs —**■**— D5(u=-d):obs 10⁵ → D5(u=d):obs 90% CL - D1:obs 10⁴ C1:obs 10³ 10² **Excluded** 10 200 400 600 800 1000 1200 0 m_χ [GeV]

- M* → inversely proportional to coupling
- Region <u>below</u> line excluded

Free parameters: m_χ, scale M*

Direct detection limits

- Transform limits on the EFT scale, M*, into direct detection cross sections
- Best limits from the LHC on dark matter so far

mono-W leptonic

CMS: CMS-PAS-EXO-13-004

Analysis Strategy

- One high-p_T lepton (>45 GeV for muons and >100 GeV for electrons)
- Ratio of lepton p_T to MET is between 0.4 and 1.5
- Δφ(lep., MET)>0.8π
- Excess in bins of M_{T} is used to set limit •

 $M_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi_{\ell,\nu})}$ CMS Preliminary e + E^{miss} L dt = 20 fb ⁻¹ **CMS Preliminary** $\mu + E_{-}^{miss}$ √s = 8 TeV $\int L dt = 20 \text{ fb}^{-1}$ √s = 8 TeV $>10^{7}$ Μ, = 300 GeV Λ = 200 GeV $\sim 10^6$ $M_x = 300 \text{ GeV } \Lambda = 200 \text{ GeV}$ Ŵ-> I v QCD tt +sinale top 010⁶ Spin Independent Spin Independent Ğ 10⁵ QCD tt + single top γ + jets DM ξ = +1 <u>10</u> DM ε = -1 Diboson data Diboson DM $\xi = 0$ DY Events 10² DM = 0syst uncer. syst uncer. DM ξ = -1 data 10

21

Event Display

Direct detection limits

• Limits calculated using the $M_{\rm T}$ distribution compared to direct detection

Summary/Outlook

- Looking for new physics after Higgs
 - Dark matter most well-motivated search with colliders
- Looking for new physics in the high-MET range
 - Studied new kind of mono-Z EFT in the leptonic channel (ATLAS)
 - PRD: 1404.0051
 - Studied new final state: mono-fat-jet, or mono-W/Z hadronic (ATLAS)
 - PRL: 1309.4017
 - Studied mono-W in the leptonic channel (CMS)
 - Conference Note: <u>CMS-PAS-EXO-13-004</u>
 - ATLAS also has a conference note: <u>ATLAS-CONF-2014-017</u>
 - See Toyoko Orimoto's talk for more mono-EWK boson limits:
 - "Mono- and di-photon searches for new physics at the LHC"
- Set limits with 7 and 8 TeV data, preparing for 13 TeV!

Searches for dark matter

- Gravitational interactions provided first evidence for dark matter
- Search for weak interactions with ordinary matter
- Three types of searches

Direct Detection

e.g. Xenon, LUX

DM

Collider searches

26 June 2014

DM

SM

$L = \frac{1}{\Lambda_7^3} \bar{\chi} \chi \sum_i k_i F_i^{\mu\nu} F_{\mu\nu}^i,$ $\Gamma^{\text{Scalar}}(h \to \chi \chi) = \frac{\lambda_{h\chi\chi}^{2 \text{ Scalar}} v^2}{64\pi m_h} \left[1 - \left(\frac{2m_{\chi}}{m_h}\right)^2 \right]^{1/2}$ $\Gamma^{\text{Vector}}(h \to \chi \chi) = \frac{\lambda_{h\chi\chi}^{2 \,\text{Vector}} v^2}{256\pi m_{\chi}^4 m_h} \left[m_h^4 - 4m_{\chi}^2 m_h^2 + 12m_{\chi}^4 \right] \left[1 - \left(\frac{2m_{\chi}}{m_h}\right)^2 \right]^{1/2}$ $\Gamma^{\text{Majorana}}(h \to \chi \chi) = \frac{\lambda_{h\chi\chi}^{2 \text{ Majorana}} v^2 m_h}{32\pi\Lambda^2} \left[1 - \left(\frac{2m_\chi}{m_h}\right)^2 \right]^{3/2}$

Name	Operator	Coefficient	
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3	
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3	
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3	
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3	
D5	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$1/M_*^2$	
D6	$ar{\chi}\gamma^{\mu}\gamma^{5}\chiar{q}\gamma_{\mu}q$	$1/M_*^2$	
D7	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu\gamma^5 q$	$1/M_*^2$	
D8	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$	$1/M_*^2$	
D9	$ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_*^2$	
D10	$ar{\chi}\sigma_{\mu u}\gamma^5\chiar{q}\sigma_{lphaeta}q$	i/M_*^2	
D11	$ar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^3$	
D12	$ar{\chi}\gamma^5\chi G_{\mu u}G^{\mu u}$	$ilpha_s/4M_*^3$	
D13	$ar{\chi} \chi G_{\mu u} ilde{G}^{\mu u}$	$ilpha_s/4M_*^3$	
D14	$ar{\chi}\gamma^5\chi G_{\mu u} ilde{G}^{\mu u}$	$lpha_s/4M_*^3$	

 $\frac{1}{\Lambda_{\varsigma}^3}\bar{\chi}\chi(D_{\mu}H)^{\dagger}D^{\mu}H,$

Lagrangians

Kinematics

- Most background comes from Z+jets with a mis-measured jet energy
- Studied axial-MET = -MET* $cos(\Delta \phi_{MET,z})$
 - naturally combines the two
- But we cut on $\Delta \phi_{MET,Z}$ and MET separately best distinguishing power

WW, tt, and $Z \rightarrow \tau \tau$ backgrounds

- Data-driven background estimate
 - Lower systematic uncertainty
- WW, tt, Wt, and $Z \rightarrow \tau \tau$ backgrounds contribute to the ee and µµ signal regions and eµ region
 - ee:μμ:eμ as 1:1:2
- Correct for different lepton reconstruction efficiencies

10

 10^{7}

10⁶

10⁵

10⁴

10

10²

ATLAS

 $Ldt = 4.6 \text{ fb}^{-1}$

vs = 7 TeV

ee

40

60

80

Events / 2GeV

from WW cross section paper "Phys. Rev. D 87, 112001 (2013)"

 $N_{ee}^{\rm bkg} = \frac{1}{2} \times N_{e\mu}^{\rm data, sub}$ k=rātio of avg. elec and muon reconstruction efficiency

Astroparticle Physics 2014

26 June 2014

180 200

Backgrounds and Uncertainties

- Main background: ZZ production
 - other contributions: WZ, WW,
 Z+jets, top, fakes
- ZZ is main source of background uncertainty

Uncontainty Source	$E_{\rm T}^{\rm miss}$ threshold [GeV]			
Uncertainty Source	150	250	350	450
Statistical [%]	2	6	13	24
Experimental [%]	3	6	9	8
Theoretical [%]	35	35	35	35
Luminosity [%]	3	3	3	3
Total [%]	35	36	38	43

ZZ Cross Section Measurement

- ZZ cross section measurement at 7 TeV agrees with MC
 - Fiducial cross sections:
 12.7^{+3.1}_{-2.9}±1.7±0.5 fb measured vs. 12.5±0.1^{+1.0}_{-1.1} fb predicted
- ZZ→llvv background is estimated from MC
 - ZZ production checked in a 4 lepton control region

MC Theory systematics

- MC yellow book estimates ZZ background uncertainties using fixed scale IIII decay channel
 - Parameterized fit for uncertainty
- Systematics are reduced for llvv
 - no γ* contribution
 - dynamic scale versus fixed scale

Additional systematics come from experimental uncertainty, difference in acceptance between Sherpa and PowhegBox, and PDF uncertainty for the D1 operator

WW, tt, and $Z \rightarrow \tau \tau$ backgrounds

- Find eµ events satisfying analysis cuts
- Subtract non-WW, tt, Wt, and
 Z→ττ backgrounds to get N_{eµ}
 - other diboson, W+jets
- Systematic uncertainties
 - Includes:
 - Statistical uncertainty, N_{eµ}
 - Efficiency correction factor, k
 - Systematics on MC subtraction
 - ~75% for mono-Z
 - ~30% for ZH

Aside: mono-γ

140

120 100

20

20

-20

50

Counts

Counts-Model

- Connection with the indirect detection bump from FermiLAT
 - Rule out region of phase space capable of producing the bump
- Reinterpret the 7 TeV mono-γ collider limits using the same s-channel diagram
- Operator models indirect production of dark matter with a photon and χ in the final state

hep-ph/1307.5064. <u>AN, L.Carpenter,</u> <u>R.Cotta, A.Johnstone,</u> <u>D.Whiteson</u>

FermiLAT Data

150

200

FermiLAT

46.7 - 247.8 GeV

Reg2, $m_{dm} = 149 \text{ GeV}$

100

hep-ph/12031312. T.Bringmann et al.

E [GeV]

Signal counts: 85.1 (4.3 σ)