Status of Supersymmetry after LHC Run 1

Lian-Tao Wang University of Chicago

Astroparticle Physics 2014. Amsterdam, June 23, 2014

- Has been the primary target for new physics search for the last 30 years.

- Has been the primary target for new physics search for the last 30 years.
- Would be the answer to (almost) all our questions and puzzles.

- Has been the primary target for new physics search for the last 30 years.
- Would be the answer to (almost) all our questions and puzzles.
- Every time there was some "excess", we thought it was SUSY.

- Has been the primary target for new physics search for the last 30 years.
- Would be the answer to (almost) all our questions and puzzles.
- Every time there was some "excess", we thought it was SUSY.
- And, there is a beautiful minimal model of SUSY, the MSSM.
 - \triangleright Often, we think MSSM = SUSY.

Spectacular signal promised.

- Large production rate, dominated by gluino+squark.
- Long decay chain, rich final states.

THE "O(3)" VER Spectacular signal promistigned. SUSY LOOKS

- Large production rate, dominated by gluino+squark.
- Long decay chain, rich final states.

THE "O(3)" VER Spectacular signal promisticus LOOKS

Of course, still plausible at the LHC, will keep looking. Higher energy \Rightarrow higher reach

However, on the mind of most of us:

SCIENTIFIC AMERICAN™

Search ScientificAmerican.com

Q

Subscribe News & Features - Blogs - Multimedia - Education - Citizen Science - Topics -

Home » Scientific American Magazine » May 2012

- SUSY will never die. It just gets heavier.

- SUSY will never die. It just gets heavier.
- What we really mean: is SUSY still promising.

- SUSY will never die. It just gets heavier.
- What we really mean: is SUSY still promising.
- SUSY promises to do so much for us.
 - Can it still do it?

- SUSY will never die. It just gets heavier.
- What we really mean: is SUSY still promising.
- SUSY promises to do so much for us.
 - Can it still do it?
- Are there still interesting model directions?

- SUSY will never die. It just gets heavier.
- What we really mean: is SUSY still promising.
- SUSY promises to do so much for us.
 - Can it still do it?
- Are there still interesting model directions?

I will try to give my answer. Warning: will be subjective!

Why do we like SUSY: beyond Einstein

- A unique extension of space-time symmetry.
- Our (only) chance of going beyond Einstein.
- In some sense, it has to be part of the fundamental theory.
- It is a broken symmetry.
- That's fine. But, this fact does not lead to predictions about where SUSY may be.

Why do we like SUSY: Unification

- Not affected by the current limits.
- A feature we would like to keep when considering extensions.

Why do we like SUSY: dark matter

Why do we like SUSY: dark matter

Possible scenarios (not over-closing)

- Higgsino ≤ TeV
- Wino \lesssim 3 TeV
- Well temper:

 $\tilde{h}, \ \tilde{W}$ $\Delta M \sim \text{several } \% \times M_{\text{DM}}$ Arkani-Hamed, Delgado, Giudice, hep-ph/0601041

- $ilde{ au}, \ ilde{q}, \ ilde{t},.$ - Coannihilation: $\Delta M \sim \text{several } \% \times M_{\text{DM}}$ \tilde{R}
- Funnel: $2 M_{DM} \approx M_X X = A, H...$

Cahill-Rowley, Hewett, Ismail, Peskin, Rizzo, 1305.2419 Cohen, Wacker, 1305.2914

Possible scenarios (not over-closing)

- Funnel: $2 M_{DM} \approx M_X X = A, H...$

Cahill-Rowley, Hewett, Ismail, Peskin, Rizzo, 1305.2419 Cohen, Wacker, 1305.2914

Why do we like SUSY: naturalness

- Stop limit is not too strong yet (I think).
 - Borderline being too tuned.

Still, want lighter stop. Loopholes?

- Yes, if stop don't decay "normally".
- Stealth.
- RPV.
- Compressed
- Not stop, top partner not even colored

-

$m_h = 126 \text{ GeV vs SUSY (MSSM)}.$

- Minimal SUSY model (MSSM)
 - Higgs mass controlled by SM gauge interactions.

$$m_h^2 = m_Z^2 \cos^2 2\beta + \text{loop} \quad \text{loop} \propto \log\left(\frac{M_{\text{SUSY}}}{M_{\text{top}}}\right)$$

m_h = 126 GeV needs M_{SUSY} » M_{top}

 In MSSM, Higgs mass gives some of the strongest limits on SUSY parameter space!

Actually, other "problems" existed long ago

Kaon mixing, e.g. Martin "Supersymmetry primer"

$$\frac{|\operatorname{Re}[m_{\tilde{s}_{R}^{*}\tilde{d}_{R}}^{2}m_{\tilde{s}_{L}^{*}\tilde{d}_{L}}^{2}]|^{1/2}}{m_{\tilde{q}}^{2}} < \left(\frac{m_{\tilde{q}}}{1000 \text{ GeV}}\right) \times \begin{cases} 0.0016 & \text{for } m_{\tilde{g}} = 0.5m_{\tilde{q}}, \\ 0.0020 & \text{for } m_{\tilde{g}} = m_{\tilde{q}}, \\ 0.0026 & \text{for } m_{\tilde{g}} = 2m_{\tilde{q}}. \end{cases}$$

- SUSY flavor/CP problem (last century).

- Most straightforward conclusion: scalars probably would be heavy, 10s – 100s TeV!
- Perhaps not surprising we have not seen the scalar superpartners.

- Even with these "problems":

- Even with these "problems":
- SUSY (garden variety MSSM) still gets produced and detected in the way that has been anticipated for the past decades.
 - ▶ Just slightly heavier than we thought.

- Even with these "problems":
- SUSY (garden variety MSSM) still gets produced and detected in the way that has been anticipated for the past decades.
 - ▶ Just slightly heavier than we thought.
- Parameter space needs to be somewhat tweaked.
 - Mechanism, accidents, perhaps both.

- Even with these "problems":
- SUSY (garden variety MSSM) still gets produced and detected in the way that has been anticipated for the past decades.
 - ▶ Just slightly heavier than we thought.
- Parameter space needs to be somewhat tweaked.
 - Mechanism, accidents, perhaps both.
- However, it may be time to take a step back...

- What about just heavy scalars?

- What about just heavy scalars?
- More fine tuned. Yes. 10²⁻⁴ more tuned than TeV partners.
 - Still solves most of the naturalness problem (10^{32}).

- What about just heavy scalars?
- More fine tuned. Yes. 10²⁻⁴ more tuned than TeV partners.
 - Still solves most of the naturalness problem (10^{32}).
- On the other hand
 - ▶ Simplest solution to the flavor (CP) problems.

- What about just heavy scalars?
- More fine tuned. Yes. 10²⁻⁴ more tuned than TeV partners.
 - Still solves most of the naturalness problem (10^{32}).
- On the other hand
 - Simplest solution to the flavor (CP) problems.
- Higgs mass.

Heavy scalar, the simplest scenario

A promising scenario for the LHC

Mini-split, spread, zprime-mediation, ...

Fermionic partners still tend to be light.

 Stop as light as it can be. Perhaps even hidden by RPV, being stealth, compressed, or something like that.

- Stop as light as it can be. Perhaps even hidden by RPV, being stealth, compressed, or something like that.
- Higgs mass needs some help, NMSSM, D-term, etc. Not very pretty, new particles, large coupling, ... But doable.

- Stop as light as it can be. Perhaps even hidden by RPV, being stealth, compressed, or something like that.
- Higgs mass needs some help, NMSSM, D-term, etc. Not very pretty, new particles, large coupling, ... But doable.
- Dark matter may not be the usual thermal WIMP story
 - ▶ Non-thermal production.
 - ▶ Not (just) the LSP.

- Stop as light as it can be. Perhaps even hidden by RPV, being stealth, compressed, or something like that.
- Higgs mass needs some help, NMSSM, D-term, etc. Not very pretty, new particles, large coupling, ... But doable.
- Dark matter may not be the usual thermal WIMP story
 - ▶ Non-thermal production.
 - ▷ Not (just) the LSP.

Minimal flavor violation (MFV) + RPV

Nikolidakis and Smith, 0710.3129, Csaki, Grossman, Heidenreich, 1111.1239

- R-parity violation a good way to "hide" SUSY.
- MFV, all flavor violation coming from SM yukawa couplings.
 - A good framework to address the SUSY flavor problem.
- Imposing MFV on R-parity breaking couplings?
 - MFV+RPV can satisfy all the constraints on RPV!
- For example, the often studied udd coupling would be

$$W_{\rm BNV} = \frac{1}{2} w''(Y_u \,\overline{u})(Y_d \,\overline{d})(Y_d \,\overline{d})$$

Flavored Dark Matter [Batell, Pradler, Spannowsky] [Batell, Lin, Wang]

Basic Idea: Give dark matter a flavor!

 MFV implies a Z3 symmetry, *flavor triality*, under which all SM fields are neutral and Dark Matter is charged
MFV can stabilize Dark Matter!

Can make viable models of Dark Matter!

At the LHC

- May find "heavy stop", but theory is natural.

Conclusions

- Is SUSY still a promising scenario?
- Yes. "Good old" SUSY signal could be just around the corner.
- But, more likely, the appearance of SUSY may be different than we thought.
- Not as natural as we expected. (still solves the big hierarchy problem)
- Or, not as minimal as we thought, spectrum can be surprising.
- Experiments can tell us!

"best" stop hiding, RPV with udd

Estimated by scaling up using parton luminosity

Salam and Weiler

http://collider-reach.web.cern.ch/collider-reach/

350 400