Progresses on Minimal Dark Matter

Filippo Sala

IPhT, CEA/Saclay and CNRS

mainly based on Cirelli, S, Taoso work in progress

Astroparticle Physics 2014, Amsterdam, 23 June 2014

Data: no answer so far, everything agrees with Standard Model

Data: no answer so far, everything agrees with Standard Model

Theory: answer \equiv attitude towards the **hierarchy problem**

[\simeq why not $m_h \approx \Lambda_{\rm NP}$? (e.g. $\Lambda_{\rm NP} = M_{\rm Planck}$)]

1 The Fermi scale is "natural"

 $[\Rightarrow \Lambda_{\rm NP} \lesssim TeV]$

A mechanism screens m_h from scales higher than M_{NP} , for any NP Examples: Supersymmetry composite Higgs models

Data: no answer so far, everything agrees with Standard Model

Theory: answer \equiv attitude towards the hierarchy problem

[\simeq why not $m_h \approx \Lambda_{\rm NP}$? (e.g. $\Lambda_{\rm NP} = M_{\rm Planck}$)]

1 The Fermi scale is "natural"

 $[\Rightarrow \Lambda_{\rm NP} \lesssim TeV]$

A mechanism screens m_h from scales higher than M_{NP} , for any NP Examples: Supersymmetry composite Higgs models

"Standard" approach on Dark Matter:

it is a byproduct of theories that solve the HP, e.g. Neutralino in supersymmetry

Data: no answer so far, everything agrees with Standard Model

Theory: answer \equiv attitude towards the hierarchy problem

[\simeq why not $m_h \approx \Lambda_{\rm NP}$? (e.g. $\Lambda_{\rm NP} = M_{\rm Planck}$)]

- 2 Short distance assumptions $[\Lambda_{\rm NP} \gg \text{TeV} \text{ is possible}]$
- 3 Multiverse: Fermi scale anthropic, near-critical, ... $[\Lambda_{\rm NP} \gg \text{TeV} \text{ is possible}]$

2 has two more requirements than attitude 1:

i) no problems from gravity ~~ ii) know all physics up to $M_{\it Planck}~({\rm or}~\infty)$

Data: no answer so far, everything agrees with Standard Model

Theory: answer \equiv attitude towards the hierarchy problem

[\simeq why not $m_h \approx \Lambda_{\rm NP}$? (e.g. $\Lambda_{\rm NP} = M_{\rm Planck}$)]

- 2 Short distance assumptions $[\Lambda_{\rm NP} \gg {\rm TeV} \text{ is possible}]$
- 3 Multiverse: Fermi scale anthropic, near-critical, ... $[\Lambda_{\rm NP} \gg \text{TeV} \text{ is possible}]$

2 has two more requirements than attitude 1:

i) no problems from gravity ~~ ii) know all physics up to $M_{\it Planck}~({\rm or}~\infty)$

2 and 3 open new avenues for Dark Matter model building

Philosophy: Focus on DM, and try to preserve SM successes (B, L, flavour and CP violation, ...) + DM stability, just by gauge invariance

Approach: add to the SM extra particle χ and determine its "good" quantum numbers "good" = i) stable ii) lightest component neutral iii) allowed

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + c\, \bar{\chi}(i\hat{D} - M_{\chi})\chi \qquad \left[+ c\left(|D_{\mu}\chi|^2 - M_{\chi}^2|\chi|^2
ight) ext{ if scalar, } \mathsf{c} = 1 ext{ or } 1/2
ight]$$

other terms forbidden by Lorentz + gauge invariance (fermions)/by hand (scalars)

 M_{χ} is the only one free parameter, fixed if we impose thermal relic abundance!

[In "standard" SUSY many parameters obscure phenomenology]

Minimal Dark Matter: candidates

Allowed: χ neutral under g, γ , and almost under Z (direct detection)

$$\Rightarrow \chi = n \text{-tuplet of } SU(2)_L \qquad Y = 0$$

Stable: No renormalizable nor dim-5 operators that lead to decay

 \Rightarrow first candidates are n = 5 fermion and n = 7 scalar

Lightest component neutral: $M_Q - M_{Q=0} \simeq Q(Q + rac{2Y}{c_{\theta_{wv}}})\Delta M$

 $\Delta M^{
m 2-loop} = 164.5 \pm .5$ MeV Ibe Matsumoto Sato 1212.5989

Minimal Dark Matter: candidates

Allowed: χ neutral under g, γ , and almost under Z (direct detection)

$$\Rightarrow \chi = n \text{-tuplet of } SU(2)_L \qquad Y = 0$$

Stable: No renormalizable nor dim-5 operators that lead to decay

 \Rightarrow first candidates are n = 5 fermion and n = 7 scalar

Lightest component neutral: $M_Q - M_{Q=0} \simeq Q(Q + \frac{2Y}{c_{\theta_{uv}}})\Delta M$

 $\Delta M^{
m 2-loop} = 164.5 \pm .5$ MeV lbe Matsumoto Sato 1212.5989

Avoid g_2 Landau pole before $M_{\rm Pl} \Rightarrow n$ not too large

In practice: $n \le 8$ for scalars, $n \le 5$ for fermions [issue from 2-loop? Nardecchia et al, work in progress]

Summary of candidates

Table from	Cirelli	Strumia	0903.3381
------------	---------	---------	-----------

Quantum numbers		DM can	DD	Stable?	
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
2	1/2	S	EL	×	×
2	1/2	F	EH	×	×
3	0	S	HH^*	\checkmark	×
3	0	F	LH	\checkmark	×
3	1	S	HH, LL	×	×
3	1	F	LH	×	×
4	1/2	S	HHH^*	×	×
4	1/2	F	(LHH^*)	×	×
4	3/2	S	HHH	×	×
4	3/2	F	(LHH)	×	×
5	0	S	(HHH^*H^*)	\checkmark	×
5	0	F	—	\checkmark	\checkmark
5	1	S	$(HH^*H^*H^*)$	×	×
5	1	F	-	×	\checkmark
5	2	S	$(H^*H^*H^*H^*)$	×	×
5	2	F	-	×	\checkmark
6	1/2, 3/2, 5/2	\overline{S}	_	×	\checkmark
7	0	S	—	\checkmark	
8	$1/2, 3/2 \dots$	S	_	×	\checkmark

Masses if χ thermal relic: $M_3 \simeq 3$ TeV $M_5 \simeq 10$ TeV $M_7 \sim 25$ TeV

MDM and vacuum stability

Standard Model vacuum is metastable

but if BICEP confirmed NP could be necessary to correct λ running

[see e.g. Espinosa Giudice Riotto 0710.2484, Hook et al 1404.5953]

Filippo Sala

CEA/Saclay

Progresses on Minimal Dark Matter

Why an EW fermion triplet?

Quantum numbers		DM can	DD	Stable?	
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
3	0	\overline{F}		$\ $ $$	×

 \rightarrow Stable if one imposes *L* or *B* – *L* (already in the SM!)

[also kills all higher-dimensional operators that could make it decay]

Why an EW fermion triplet?

Quantum numbers		DM can	DD	Stable?	
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
3	0	F		√	×

 \rightarrow Stable if one imposes L or B - L (already in the SM!)

[also kills all higher-dimensional operators that could make it decay]

ightarrow Not a big issue for $m_h \;\;\Rightarrow\;\;$ does not worsen fine-tuning

$$\begin{split} \delta m^2 &= \frac{M^2}{(4\pi)^4} \, \frac{n(n^2-1)}{4} \, g_2^2 \left(6 \ln \frac{M^2}{\bar{\mu}^2} - 1 \right) \\ \\ M_\chi &\lesssim 1.0 \sqrt{\Delta} \text{ TeV to have less than (100/\Delta) \% fine-tuning} \\ \\ & [5\text{-plet } M_\chi \lesssim 0.4 \sqrt{\Delta} \text{ TeV, 7-plet } M_\chi \lesssim 0.06 \sqrt{\Delta} \text{ TeV}] \end{split}$$

Farina Pappadopulo Strumia 1303.7244

 $\rightarrow~$ Helps with unification of gauge couplings

see e.g. "Split SUSY without SUSY" Frigerio Hambye 0912.1545 [Same running could put 5-plet in trouble, stay tuned with Nardecchia et al]

Why an EW fermion triplet?

ightarrow Connection with SUSY with heavy scalars m James Wells hep-ph/0306127

scalars $m_{_{3/2}}$ gluino bino wino

Keep all good features of Supersymmetry DM, unification of gauge couplings,...

And accept a tuned m_h (e.g. anthropic)

- \rightarrow All other scalars are heavier
- ightarrow Higgsinos also heavier if $\mu \sim m_{3/2}$
- \rightarrow Wino LSP candidate for Dark Matter!

See also: Arkani-Hamed Dimopoulos hep-th/0405159 Giudice Romanino hep-ph/0406088

Arvanitaki Craig Dimopoulos Villadoro 1210.0555

Hall Nomura Shirai 1403.8138

Progresses on Minimal Dark Matter

$\rightarrow \mathsf{Modelling}$

ightarrow Phenomenology

Progresses on Minimal Dark Matter

\rightarrow Phenomenology

Indirect detection

Hryczuk Cholis lengoTavakoli Ullio 1401.6212

Direct Detection

2011: DM-gluon 2-loop 2013: new matrix elements $\Rightarrow \sigma_{\rm SI} = 0.6 \times 10^{-46} {\rm cm}^2$ Farina Pappadopulo Strumia 1303.7244

Future colliders?

"The community needs studies of what could be probed at a 100 TeV machine and not elsewhere, and it needs them soon"

Michelangelo Mangano, 100 TeV kick-off meeting, Feb 2014, CERN

Currently unclear where particle physicists will put (EU? China? ???) money:

HL-LHC $\sqrt{s} = 14$ TeV, 3000 fb⁻¹, ~ 2025-2035 HE-LHC $\sqrt{s} = 33$ TeV, needs new technology VLHC $\sqrt{s} \sim 100$ TeV, start ~ 2040(?), needs ~ 100 km tunnel ILC $\sqrt{s} = 0.5 - 1$ TeV, maybe Japan soon

CLIC \sqrt{s} up to 3 TeV, needs new technology

TLEP \sqrt{s} up to 500 GeV, higher luminosity, needs \sim 100 km tunnel

Hadron colliders: Monojets + missing energy

$$M_{\chi^{\pm}} - M_{\chi_0} = 165 \text{ MeV} > m_{\pi} \Rightarrow \text{ lifetime } \tau = 44 \text{cm}/(n^2 - 1)$$

Almost all χ^{\pm} s decay to χ_0 + unseeable pions before reaching detectors

see also Low Wang 1404.0682

Hadron colliders: Forward dijets + missing energy

Conclusions

An EW fermion triplet to make Dark Matter

[needs non-standard attitude towards hierarchy problem]

\rightarrow Why interesting

✓ stable by B - L ✓ not big contribution to m_h

✓ helps with unification of gauge couplings

✓ stabilizes EW vacuum ✓ mimics Wino LSP

→ Phenomenology

Hard to see, collider vs astro

Outlook/in progress: monophoton,...

Filippo Sala

ID prospects

EW quintuplet

