Dark matter annihilations and decays after the AMS-02 positron measurements

Anna S. Lamperstorfer Technische Universität München

Astroparticle Physics: a joint TeVPA/IDM conference 24 June 2014

Based on arXiv:1309.2570 (Phys. Rev. D 89, 063539 (2014)), in collaboration with Alejandro Ibarra and Joseph Silk

Objective

- Obtain limits for dark matter annihilations and decays for the first time from positron flux, but also from the positron fraction (see also arXiv:1306.3983 Bergström et al.)
 - Contrary to the fraction the electron flux is not needed
 - → cleaner from theoretical point of view
 - Use well-motivated physical background model
 - Take the best limit from various energy windows
- Compare to limits from
 - the positron fraction
 - PAMELA and HEAT positron flux measurements
 - Fermi-LAT gamma rays

Electrons and positrons: from production to detection

Primary electrons from electrons supernova remnants Interstellar High energy medium (primary) cosmic rays **Spallations** electrons and positrons Secondary electrons and positrons

 e^+e^- from DM/ extra source Propagation in the Galaxy Solar modulation

Detection

Approach

Need parameterization for positron flux:

$$\phi_{e^+} = \phi_{\text{sec}} + \phi_{\text{source}} + \phi_{\text{DM}}$$

• Perform χ^2 fit to the positron flux and fraction data measured by AMS-02 to obtain the limits

Primary positrons

• Annihilations:

$$Q_{e^+}(E, \vec{r}) = \frac{1}{2} \frac{\rho_{\rm DM}^2(\vec{r})}{m_{\rm DM}^2} \sum_f \langle \sigma v \rangle_f \frac{dN_{e^+}^f}{dE}$$

• Decays:

$$Q_{e^+}(E, \vec{r}) = \underbrace{\rho_{\rm DM}(\vec{r})}_{m_{\rm DM}} \sum_{f} \Gamma_f \underbrace{\frac{dN_{e^+}^f}{dE}}_{f}$$

dark matter profile

Einasto profile

$$\rho_{\rm DM}(r) = \rho_0 \exp\left[-\frac{2}{\alpha} \left(\frac{r}{r_s}\right)^{\alpha}\right]$$

energy spectrum

different channels

$$e^+e^-, \mu^+\mu^-, \tau^+\tau^-, b\bar{b}, W^+W^-$$

Parameterizations of the fluxes from DM after propagation are given in 1012.4515 by M. Cirelli et al.

Secondary positrons: spallations

- Power law above 2 GeV
- Index: $3.3 < \gamma_e + < 3.7$

$$\Phi_{e^+}^{\text{sec,IS}}(E) = C_{e^+} E^{-\gamma_{e^+}}$$

Positron background - possible additional source

arXiv:0810.4995, Adriani et al.

Parametrization of background: positron flux

$$\Phi_{e^+}^{\mathrm{IS}}(E) = C_{e^+}E^{-\gamma_{e^+}} + C_sE^{-\gamma_s} \exp(-E/E_s)$$
 secondary positrons additional source

Parametrization of background: positron flux

$$\Phi_{e^{+}}^{\text{IS}}(E) = C_{e^{+}} E^{-\gamma_{e^{+}}} + C_{s} E^{-\gamma_{s}} \exp(-E/E_{s})$$

Solar modulation: $0.5 \text{GV} < \phi < 1.3 \text{GV}$

$$\Phi_{e^{+}}^{\text{TOA}}(E) = \frac{E^{2}}{(E + \phi_{e^{+}})^{2}} \Phi_{e^{+}}^{\text{IS}}(E + \phi_{e^{+}})$$

Fit to AMS data

Parametrization of background: positron fraction

 $\frac{\Phi_{e^+}^{\text{TOA}}}{\Phi_{e^+}^{\text{TOA}} + \Phi_{e^-}^{\text{TOA}}}$

Electrons: use measured flux

$$\Phi_{e^{-}}^{\text{TOA}}(E) = \frac{E^2}{(E + \phi_{e^{-}})^2} \left[C_1 (E + \phi_{e^{-}})^{-\gamma_1} + C_2 (E + \phi_{e^{-}})^{-\gamma_2} \right]$$

Fit electron parameters to electron flux

Fit positron parameters to the fraction

Limits: fit

$$\Phi_{e^{+}}^{\text{bkg,TOA}}(E) = \Phi_{e^{+}}^{\text{sec,TOA}}(E) + \Phi_{e^{+}}^{\text{source,TOA}}(E)$$

$$2\sigma \quad \text{limit corresponds to} \quad \Delta \chi^{2} > 4$$

$$\Phi_{e^{+}}^{\text{TOA}}(E) = \Phi_{e^{+}}^{\text{bkg,TOA}}(E) + \Phi_{e^{+}}^{\text{DM,TOA}}(E)$$
increase

Limits: energy windows

Select strongest limit from sampling over various energy windows

Limits: energy windows

Select strongest limit from sampling over various energy windows

Limits: Competitive results from flux and fraction

Final states:

$$e^+e^-, \mu^+\mu^-, \tau^+\tau^-, b\bar{b}, W^+W^-$$

- Limits using data points above 10 GeV insensitive to solar modulation
- Probe thermal cross section for dark matter masses smaller than 100 GeV in the e^+e^- final state and for masses smaller than 60 GeV in the $\mu^+\mu^-$ final state
- Limits competitive with the one from the positron fraction, though slightly worse

Limits: Competitive results from flux and fraction

Limits: Comparison for muon and b channels

- Limits from AMS-02 positron flux are best, but PAMELA and HEAT positron fluxes give also strong limits
- Limits from the positron fraction are better than the ones from the positron flux
- In some channels, the limits from the positron flux are better than the ones from the diffuse gamma-ray flux reported by the Fermi-LAT collaboration (Ackermann et al.

arXiv:1205.2739, and arXiv:1310.0828)

Conclusions

- AMS positron measurements allow to severely constrain dark matter parameters
- Optimization of limits by choosing the best limits from using various energy windows
- Limits from the positron flux are competitive with the ones form the positron fraction and in some cases better than the limits reported by the Fermi-LAT collaboration

Thank you for your attention!

Propagation: MIN, MED and MAX parameters

Limits: Comparison for muon and b channels

Limits: energy windows

Select strongest limit from sampling over various energy windows

Propagation in the Galaxy

The diffusion loss equation for positrons:

$$0 = \frac{\partial f_{e^+}}{\partial t} = \nabla \cdot [K(E, \vec{r}) \nabla f_{e^+}] + \frac{\partial}{\partial E} [b(E, \vec{r}) f_{e^+}] + Q(E, \vec{r})$$

- Consider stationary case
- Diffusion coefficient describes scattering off random component of galactic magnetic fields
- Energy losses for positrons: synchrotron radiation, inverse Compton scattering
- Source term from dark matter annihilations and decays

Useful parameterization of the positron fluxes at Earth is given in arXiv:1012.4515 by M. Cirelli et al.