

Trevor Weekes

Eckart Lorenz

Why Cherenkov Telescopes?

- Gamma-ray astronomy
 - ▶ In general big advantages over other methods of probing high energy particles (probes hadrons + leptons, photon cross-section,)
- Advantages to satellites
 - Only way to build sensitive >TeV instruments
 - High statistics /short timescales
 - Large collection areas O(km²)
- Advantages to ground particle detectors
 - Superior energy/angular resolution
 - Superior background rejection
- Limitations?
 - Smallish duty cycle, smallish field of view

VERITAS

- Four telescope system at Whipple Observatory (1270 m alt.) in Arizona, USA
- Completed 2007
 - ▶ 2009 telescope move
- Cameras upgraded 2012
 - Much higher quantum efficiency PMTs
 - Improved trigger

MAGIC

- Two large telescopes on La Palma (2200 m alt.)
- First telescopecompleted 2004
- Second telescopeoperational 2009
- Upgrade
 - of original camera 2012

1039 pixel, 3.5° FoV

H.E.S.S.

- Khomas Highlands of Namibia (1800 m alt.)
- Phase 1
 - ► Four 12 m telescope system completed 2004
- Phase 2
 - Addition of a 28 m telescope in 2012
 - ▶ 0.07° pixels, 3.5° FoV
- Upgrade underway
 - Of original cameras
 - ► Completed 2016
 - Reduced deadtime / improved reliability

Scientific Highlights

- Imaging of cosmic particle acceleration sites
- Physics of pulsars and pulsar winds
- Galactic surveys
- Probing the extragalactic background light
- Extreme variability of AGN
- Limits on dark matter and new physics
- 17 papers in Science/Nature/PRL
- Major contributions from <u>all</u> current CTAs

The Vela Pulsar

- 2nd pulsar detectable from the ground (high statistics and high energies)
- A step towards understanding the high energy properties of pulsars in general
 - The Crab is rather special need more objects!

IC 310

- The closest blazar (z=0.019)
 - Previously thought to be a (large viewing angle) radio galaxy, new: VLBI jet
- Extreme variability seen with MAGIC
 - ▶ Despite larger jet viewing angle ~15°

MAGIC OF PSE

NGC 1275+

0313+411 Epoch: 2012-12-10 15.4 GH

VLBI

PKS 1424+240

- The most distant blazar
 - Very solid lower limit z>0.63 from absorption lines in optical spectrum
- Well measured spectrum to several hundred GeV
- Implied upturn in intrinsic spectrum

How to do better with IACT arrays?

- More events
 - More photons = better spectra, images, fainter sources
 - Larger collection area for gamma-rays
- Better events
 - More precise measurements of atmospheric cascades and hence primary gammas
 - Improved angular resolution
 - Improved background rejection power
- More telescopes!

The Cherenkov Telescope Array

- A huge improvement in all aspects of performance
 - ▶ A factor ~10 in sensitivity, much wider energy coverage, much better resolution, field-of-view, full sky, ...
- A user facility / proposal-driven observatory
 - With two sites with a total of >100 telescopes
- A 27 nation ~€200M project
 Including everyone from HESS, MAGIC and VERITAS

23 m diameter 389 m² dish area 28 m focal length 1.5 m mirror facets

4.5° field of view0.1° pixelsCamera Ø over 2 m

Carbon-fibre structure for 20 s positioning

Active mirror control

4 LSTs on South site 4 LSTs on North site

Medium-Sized Telescope

100 m² dish area 16 m focal length 1.2 m mirror facets

7.5° field of view ~2000 x 0.18° pixels

25 MSTs on South site 15 MSTs on North site

Berlin MST prototype

Small-sized Telescopes

~8 m² dish area

9° field of view ~0.2° pixels

70 SSTs on South site

Small-sized Telescopes

~8 m² dish area

9° field of view ~0.2° pixels

70 SSTs on South site

Small-sized Telescopes

SST-2MPrototypes by Autumn

~8 m² dish area

9° field of view ~0.2° pixels

70 SSTs on South site

Medium-sized Dual Mirror telescope

9.7 m primary
5.4 m secondary
5.6 m focal length, f/0.58
40 m² eff. coll. area
PSF < 4.5' over FoV
8° field of view
11328 x 0.07° SiPM pixels
Target readout ASIC

Extend South array by adding 24 SCTs

→ increased collection area

→ improved angular resolution

Full camera prototypes of most systems by end of the year Cameras Photosensors PMTs for LST/MST Silicon PMs (or MAPMs) for SST +SCTs (smaller plate scales) Both fully digital and analogue pipelines being prototyped

Electronics

Signal processing ASIC for the NECTAr project.

CTA Sites

Sites: Candidates

Sites: Candidates

Arizona (2)

+additional lower priority candidates

- South
 - Negotiations starting with Namibia and Chile → Decision by November 2014
- SPN North
 - Mexico, US and Spain still all under consideration → Decision early 2015
 - Site development 2015+

CTA Timeline

- CTAO Public Limited Company founded v. soon
 - Interim legal entity for the CTA Observatory
 - ▶ Taking over from (partly) FP7 funded Prep. Phase
- Aiming for project approval mid 2015

CTA Science

Cosmic Particle Acceleration, Propagation and Impact

- Mechanisms for particle acceleration, galactic CR acceleration and Pevatrons, acceleration in jets and lobes of AGN, cosmic ray transport, ...
- What role do accelerated particles play in feedback on star formation and galaxy evolution?

Probing Extreme Environments

Neutron stars and black holes, relativistic jets, winds and explosions, the contents of cosmic voids, ...

Physics Frontiers

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high-energy photons?
- Do axion-like particles exist?

CTA Reach

- Galactic objects
 - Newly born pulsars and the supernova remnants
 - have typical brightness such that HESS etc can see only relatively local (typically at a few kpc) objects
 - ▶ CTA will see whole Galaxy
- Field of view + sens.

HESS

► Survey speed ~300×HESS

CTA Resolution

Variability with CTA

Variability with CTA

Variability with CTA

Conclusions

- Current Cherenkov Telescope Arrays still delivering
 - ► All with (fairly) recent upgrades and recent important results → watch this space!

CTA

- Major recent progress towards realising the observatory
- ▶ On track for completion ~2020 (1st science much earlier)
- Will open up VHE astronomy to a wide community
- NB Ground-based future is not just IACTs
 - ▶ Also HAWC (now!) and LHAASO (on CTA timescale)

CTA Area

CTA Area

CTA Area

MACE

- At Hanle, India, 4200m
- 360 m² (21 m ∅) mirror
- Threshold ~20 GeV
- 1088 pixel 4° FoV
- First work on site begun
- Expect 1st results 2013
- Add 3 more tels ~2016

The CTA Collaboration

