

ANTARES constraints on the neutrino flux from the Milky Way

TeVPA/IDM 2014 24-06-2014 Erwin Visser

Outline

- Neutrino signal from the Milky Way
- Estimating the neutrino flux
- Description of the analysis method
- ANTARES results

Neutrino signal from the Milky Way

Neutrino signal from the Milky Way

- Cosmic rays interact with interstellar gas
- Neutrinos produced mainly via charged pion decay
- Pions do not interact before decay
 - Neutrino spectrum follows CR spectrum
- Guaranteed signal
- IceCube excess could be caused by this mechanism
 - Neronov et al. Phys. Rev. D, 89 (103002), 2014

Estimating the neutrino flux

1. Theoretical models

Model name	Reference	Matter density	Cosmic ray flux
NoDrift_simple	Ingelman and Thunman	constant:	constant
	arXiv:hep-ph/9604286	1 nucleon / cm^3	
NoDrift_advanced	Candia and Roulet	constant:	constant
	JCAP09(2003)005	1 nucleon / cm^3	
Drift	Candia	Radially	Higher in GC due to
	JCAP11(2005)002	dependent	drift of CRs

Estimating the neutrino flux

- Use GALPROP to estimate fraction of γ's from neutral pion decay and IC scattering
 - Ackermann et al. ApJ, 750 (3), 2012
- Uncertainty of neutral pion contribution is estimated from range in models
- Convert neutral pion to charged pion flux

Estimating the neutrino flux

The ANTARES neutrino telescope

90% neutrino purity

The analysis

• Optimise size of signal region for best flux limit (MRF method)

MRF versus longitude and latitude bound (NoDrift advanced):

MRF versus longitude and latitude bound (Flux calculated from Fermi data):

 Background is measured from the data and compared to number of events from the signal region

The background

1. Atmospheric muons Parameter Description Cut value angular error estimate < 8.0° β Reducible background > 1.6 R_{GF} event topology Only consider high Λ (default trigger) fit quality > -5.62 Λ (low energy trigger) fit quality > -5.57 quality, upgoing events 10⁴ Number of Events / bin ANTARES data (2007-2012) tmospheric µ simulation 10³ Atmospheric v., + v., simulation 10² 10 CR 10⁻¹ 10⁻² **ANTARES** preliminary 10^{-3} Data / MC 1.5 0.5 Earth

1.5

2

2.5

0.5

3.5

 R_{GF}

The background

1. Atmospheric muons

- Reducible background
- Only consider high quality, upgoing events

2. Atmospheric neutrinos

- Irreducible background
- Use energy estimator to suppress

E_{rec} [GeV]

Trigger

Used data: 2007 - 2012

ANTARES results

■ Signal prediction: ~0.6 – 1.8 events

Used data: 2007 - 2012

ANTARES results

- Signal prediction: ~0.6 1.8 events
- Excess corresponds to 0.8σ

ANTARES results: flux upper limits

ANTARES results: flux upper limits

Conclusions and outlook

- Measurement of (muon) neutrino flux from cosmic ray interactions in the Milky Way has been performed
- Small excess seen, compatible with background fluctuation (0.8σ)
- Flux upper limits have been set
- KM3NeT will be able to improve limits

TeVPA/IDM 2014 - Erwin Visser

NoDrift_simple model

- Constant matter density
- Neglect magnetic field
- NoDrift_advanced model
 - + Take CR composition into account

Drift model

- Magnetic field gives drift of CRs to GC
- + Model the matter density

Matter density in the galaxy (Drift)

The ANTARES detector

Cut optimisation

TeVPA/IDM 2014 - Erwin Visser

Data-MC comparison

Signal region:

TeVPA/IDM 2014 - Erwin Visser

350

Data-MC comparison

Signal region:

Sum of 8 background regions:

24-06-2014

TeVPA/IDM 2014 - Erwin Visser