

Gamma-Ray Bursts (GRBs)

- Central engine (collapse of massive star, merger of two compact stellar remnants)
- Collimated relativistic outflow
- Internal and external shocks
- Prompt keV-MeV emission
- Afterglow emission

Radiation mechanism

- Synchrotron Emission
- Inverse Compton Radiation

Distinguishable by emission at the highest energies

Artist impression of a GRB. Credit: NASA/Dana Berry, SkyWorks Digital

> 10 GeV Gamma-Ray Observatories

Wide Field of View

Continuous Operation

TeV Sensitivity

Artist impression of Fermi. Credit: Fermi collaboration

Fermi

AGILE

EGRET

HAWC

Milagro

ARGO

Tibet AS-γ

H.E.S.S.

VERITAS

MAGIC

HAWC

Data Acquisition Systems

- Triggered ("main") DAQ
 - Records time and charge of individual PMT pulses
 - Reconstruction of individual gamma-rays
- Scaler DAQ
 - PMT pulse counting mode
 - Detects GRBs from statistical excess over noise rate

GRB 130427A

- Brightest burst ever detected by Swift
- Very close (z=0.34)
- Most powerful GRB detected z< 0.5

Science 343 (2014) 48-51

GRB 130427A

- Brightest burst ever detected by Swift
- Very close (z=0.34)
- Most powerful GRB detected z< 0.5
- Longest lasting high energy emission ever detected (~20 h)
- Most energetic photon ever detected (95.3 GeV)

Evidence for inverse Compton?

What did HAWC see?

Misfortune 1

- The main DAQ was offline
- Luckily, the scaler DAQ was taking data
 - Monitoring the rate of 29 tanks (HAWC 30) with 112 PMTs

Misfortune 2

- The GRB had an elevation of only 33° in the HAWC field of view
 - Sensitivity is about 2 orders worse than at zenith
 - Increased energy threshold

GRB 130427A Upper Limits

Main DAQ

Quick look analysis

- Single time-bin analysis
- Estimate background from off-time data
- Counts number of events in T₉₀ and 3xT₉₀
- If excess < 5σ keep data blind

Currently installing at site

Provide alerts / positions to the community via GCN

Main DAQ

Likelihood analysis

- Fermi: GeV emission delayed + temporally extended
- Add this knowledge to signal Likelihood
- Crystal Ball Function

Sensitivity

Likelihood >30% more sensitive HAWC will be able to see bursts comparable to those already observed

Note: Reference GRB flux is scaled according to main DAQ duration sensitivity.

HAWC Combined Power

Abeysekara et al., Astropart. Phy. 35 (2012) 635

- Simulated GRB (black triangle)
- Green band: flux values from both DAQs agree within 25%

Assumptions

- >1 GeV emission: additional hard (long E⁻², short E^{-1.66}) power-law
- Power-law cutoff by EBL absorption
- Long GRB T₉₀ fluence ratio 10%, short GRBs 100%

Cutoff	main DAQ sGRB /yr	Scaler sGRB /yr	main DAQ LGRB /yr
n/a	1.4	0.15	0.25
$500 \; \mathrm{GeV}$	1.3	0.12	0.22
$400~{ m GeV}$	1.2	0.11	0.20
$300 \; \mathrm{GeV}$	0.97	0.10	0.15
$200~{ m GeV}$	0.54	0.07	0.08
$150 \mathrm{GeV}$	0.27	0.05	0.04
100 GeV	0.07	0.02	0.01

Detection rate as high as 1.63 GRB per year!

Summary

- HAWC is an exciting new gamma-ray experiment
- GRB 130427A was a very special GRB, but under unfavourable conditions for HAWC
- HAWC has the sensitivity to detect GRBs at the highest energies
- Detection rate might be as high as 1.6 GRBs per year!

Backup

Time Windows

- 1. 0-20 s (first two BAT emission periods)
- 2. -5-55 s (extended time window)
- 3. $-5-145 \text{ s (GBM T}_{90}=138 \text{s})$
- 4. 120-300s (third BAT emission period)
- 5. -10-290s (combine all three BAT emission periods)
- 6. -10-10s around time of highest energy LAT photon
- 7. 11.5-33s (Fermi-LAT extra hard power law)
- 8. 196-257s (Fermi-LAT power law harder then -2)

Excess Distribution

Results

Search Window [s]	0-20	-5-55	-5-145	120-300	-10-290	233-253	11.5-33	196-257
PMT Sum $[10^4]$	7593.0	22765.5	56899.3	68308.5	113826.7	7590.6	8161.3	23148.1
BG Est. $[10^4]$	7591.1	22773.6	56937.4	68326.3	113893.6	7591.1	8160.6	23153.4
Excess $[10^4]$	+1.9	-8.0	-38.0	-17.8	-66.9	-0.5	+0.6	-5.3
p-value	31%	79%	98%	71%	95%	54%	43%	69%

