

Gamma-ray Observations of Galaxy Clusters: A Brief Review

Keith Bechtol for the *Fermi*-LAT Collaboration TeVPA / IDM, 23 June 2014

Kavli Institute for Cosmological Physics at The University of Chicago

- No compelling detection of high-energy emission from the intracluster medium (ICM) yet
 - keV, GeV, and TeV observations
 - Constraints on CR energy density and B-fields
- Multiwavelength progress and opportunities
- ▶ Dark matter ⇒ see talk by Stephan Zimmer

Unique CR Accelerators

- Mpc-scale
- High beta-plasma
- Weak (M ~ 2 4)
- CR efficiency ??

- Pc-scale
- Low beta-plasma
- Strong (M ~ 1000)
- ► CR efficiency ~ 10%

$$\beta_{pl} = P_{gas} / P_{B}$$

23 June 2014

Large-Scale Shocks

- Enormous energies associated with merger events (10⁶³ – 10⁶⁴ erg)
- Majority of energy dissipated in weak shocks (M ~ 2 - 4)
- Also CR injection by galaxies and AGN which may be reaccelerated

Unique CR Reservoirs

- CR electrons responsible for GHz emission must be constantly replenished
- CR protons accumulate in ICM over Gyrs
- CR protons encode integrated non-thermal history of large-scale structure formation

Mpc-scale Radio Features

Relics

Halos

Mpc-scale Radio Features

Relics

Halos

Are radio halos secondary in origin?

Only ~1/3 clusters host giant radio halos, and only merging systems

Brown & Rudnick 2011, Markevitch 2010

23 June 2014

Keith Bechtol - KICP

Broadband Non-thermal Spectra

High-energy **upper** limits imply lower limits on intracluster magnetic field

23 June 2014

Log (E/eV)

Broadband Non-thermal Spectra

-5

10

15

23 June 2014

Gamma rays provide

Gamma-ray Predictions pre-Fermi

- Several groups anticipated that ~10 clusters might be detectable with *Fermi* LAT
- Predicated on uncertain acceleration efficiencies, especially for low Mach number (i.e., weak) shocks

See also Miniati et al. 2003, Blasi et al. 2007, ...

23 June 2014

Gamma-ray Morphology from Numerical Simulations

IC

>100 MeV

Hadronic >100 MeV

Pinzke & Pfrommer 2010

Keith Bechtol - KICP

- If underlying physics is shared among clusters, can derive joint constraints on "universal" scale
 factor ⇒ proxy for CR proton efficiency
- Spatial and spectral model for CR distribution (Pinzke & Pfrommer 2010)

Positions of 50 clusters analyzed in 4 years of LAT data, >500 MeV

23 June 2014

Keith Bechtol - KICP

- 3 clusters with significant excess, but unlikely associated with ICM
- Either spatially offset, hard spectra, inferred normalization larger than other clusters, plausible radio counterparts

Representative collection of flux upper limits derived for individual clusters

Jointly derived upper limit on scale factor propagated to corresponding CR energy density limits for individual clusters

- Joint likelihood analysis yields most stringent GeV constraints for CR protons to date
- Volume-averaged CR energy density less than ~1% of thermal ICM gas
- CR proton acceleration efficiency for intermediate shocks (M ~ 3 – 4) less than ~25%

Full details: Ackermann et al. 2014, ApJ, 787, 18

See also Huber et al. 2013

Fermi-LAT: Photon Counting Analysis

- Stacking search at energies >10 GeV using 55 high X-ray flux clusters (Prokhorov & Churazov 2014)
- Significant excess, but unlikely to be from ICM
 - Hints of variability
 - Fitted spectrum harder than expected from hadronic CR models
 - Significance of excess reduced when weighting clusters by X-ray flux

MAGIC: TeV Upper Limits for Perseus

- Deep TeV observations (85 hrs)
- Emission from NGC
 1275 vanishes above
 630 GeV (clean search)
 - Comparable upper limits on CR proton energetics as derived from *Fermi*-LAT data

20

NuSTAR: Hard X-ray Limits for Bullet

- First focusing hard X-ray (3-80 keV) optics
- No IC component needed to fit spectrum
- Limited by instrumental backgrounds > 30 keV
- Infer B > 0.2 μG

Current Observational Status

Radio observations constrain **CR protons** via the **secondary** electrons inevitably produced through interactions with ICM

Spatial + Spectral Synthesis: Coma Cluster

Spatial + Spectral Synthesis: Coma Cluster

23 June 2014

See also

Keith Bechtol - KICP

Multiwavelength Outlook

CTA has great **discovery** potential for CR protons in ICM

Multiwavelength Outlook

Broad frequency coverage currently unique to Coma

23 June 2014

Take-home Points

- Simplest hadronic secondary models to explain radio halos severely challenged by combination of gammaray non-detections and precision radio observations
- Energy density of CRs < 1 % of thermal ICM</p>
- CTA has outstanding discovery potential, and keep in mind power of current and future radio arrays to constrain CR protons via their secondaries

Gamma-ray Spectra from Numerical Simulations

23 June 2014

CR to Thermal Pressure Ratio

