

Searching for Dark Matter in Galaxies and Clusters with IceCube

Meike de With for the IceCube Collaboaration Astroparticle Physics: A Joint TeVPA/IDM conference June 24, 2014

Indirect detection in galaxies and clusters

- Sources in Northern Hemisphere with largest expected signal for IceCube:
 - Virgo galaxy cluster
 - M31 galaxy (Andromeda)
 - Segue 1
 - Ursa Major II
 - Coma Berenices

The IceCube Neutrino Observatory

 Use tracks for this analysis, as their direction can be reconstructed well

Signal and background

- Signal:
 - Upgoing neutrinos with energies from 10 GeV to 100 TeV (< few µHz, if at all)
- Background:
 - Atmospheric muons: downgoing (can be misreconstructed!) and entering the detector from outside (~ 2 kHz)
 - Atmospheric neutrinos: irreducible for this analysis (~ 0.02 Hz)

Event selection

- Two non-overlapping samples:
 - IceCube-dominated: use good direction reconstruction
 - DeepCore-dominated: use direction reconstruction & IceCube as veto
- For each sample:

Analysis method: likelihood

• Probability distributions $f_s(\psi)$ and $f_{bg}(\psi)$ to observe signal or background event with angle ψ between source and reconstructed direction

 Combined probability density to observe ψ for an event when μ signal events are present within n_{obs} observed data events:

$$f(\Psi|\mu) = \frac{\mu}{n_{obs}} f_s(\Psi) + (1 - \frac{\mu}{n_{obs}}) f_{bg}(\Psi)$$

• So maximize $\mathcal{L}(\mu) = \prod_{i=1}^{n_{obs}} f(\Psi_i | \mu)$

RADUIERTEN KOLLEG Masse-Spektrum-Symmetrie

Sensitivity

- Larger detector -
- Likelihood method
- Improved direction reconstruction
- Improved event selection
- Future plans:
 - More data (3 years)

Using only IceCubedominated sample!

Ē 600 400 200 -200 -400 -600 -600 -400 -200 200 400 600 n X (m) 10⁻²⁰ Prel. sensitivity IC86 $\langle \sigma^{}_{A} v \rangle [cm^{3} s^{-1}]$ Sensitivity IC59 Limit IC59 10-21 **IceCube Preliminary** χχ→μμ **Ursa Major 2** 10⁻²² 10³ 10^{2} $m_{\chi} [GeV] 10^4$

Summary and outlook

- A neutrino flux could originate from dark matter annihilations in galaxies and galaxy clusters
- Latest IceCube limits are from IC59, first search using data from the complete detector is ongoing
- Significant improvements with respect to IC59 limits are expected
- Stay tuned for results!

BACKUP SLIDES

Current limits from IceCube

4 | slide 10

Event selection: method

- Precuts → CPU-intensive reconstructions → train BDT to separate signal and background events
- Important to have data/simulation agreement in signal region
- Resulting BDT for IceCube-dominated sample:

BDT variables I

BDT variables II

