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Introduction

Dark matter only simulations:
No baryons.
Cusped DM profile.
Too many satellites and too-big-to-fail problem (c.f. A. Brooks’ plenary
talk).

Cosmological hydrodynamic simulations until recently:
Small disk / too massive bulge (angluar momentum problem).
Too massive stellar disks at z=0 ←− too early SFH.
Too peaked rotation curves.

Goal of this work: −→ Address this problem (with RAMSES
package). (See also Guedes et al. (2011), Stinson et al. (2013), Roskar et al. (2014),
Marinacci et al. (2014), Hopkins et al. (2014), Agertz & Kravtsov (2014), Vogelsberger
et al. (2014), Crain et al. in prep.)
−→ Use the obtained Milky-Way-like simulation as a consistent
framework for astroparticle calculations (no ± ad-hoc/simplified
considerations like spherical NFW profile or Maxwellian DM
velocity distribution...).
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RAMSES (Teyssier 2002)

This code is a grid-based hydro
solver with adaptive mesh refinement.
Idea: use the Particle-Mesh algorithm
on a set of adaptively refined grid.
Method:
each cell is recursively refined if the number
of particles per cell exceeds some threshold.
Hydrodynamics: Godunov scheme.

Figure : Adaptive Mesh Refinement
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Star formation and supernova feedback
Star formation

Infall of cold gas −→ stars.
Model the gas conversion into stars by a Schmidt law

ρ̇g = −εff
ρg

tff
for ρ > ρ0

with
tff local free-fall time.
ρ0 threshold density, equal to density defined by gas treatment.
εff star formation efficiency, set to low value (1 %).

−→Transform gas into star particles.

SN feedback:
Type II SN, relevant for stellar masses ≈ 8− 40M�.
Short living stars.
10 Myr after the star (particle) creation : explosion.
20 % of the star mass is re-injected into the gas (corresponding to a Chabrier IMF).
Energy per explosion ≈ 1051 erg.
Dissipation of SN energy time scale = 20 Myrs.
GMC model: More rare but more powerful explosions avoid an artificially
concentration of SN feedback.

Reheats the gas. Balance between star formation and SN feedback.
Drives central dark matter density (c.f. A. Brooks’ talk).
Related to Cusp/Core question and direct/indirect dark matter detection.
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Zoom simulation

Figure : 3 Boxes showing: The primordial DM density fluctuations, the
evolved structure and the zoomed DM halo.

Refinement limited to high-Resolution region!
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Milky Way-like Halo

Run R97 M97,tot M97,gas M? M97,dm R200 M200,tot
(kpc) (1010) (1010) (1010) (1010) (kpc) (1010)

A 344.9 227.52 23.96 18.23 185.32 253.69 186.68
A-DM 329.28 19.79 243.53 165.13
B 233.99 71.04 7.96 5.58 57.49 176.47 62.83
B-DM 220.85 59.73 162.90 49.42
C 244.60 81.15 9.58 5.50 6.60 181.83 68.73
C-DM 236.41 73.27 176.01 62.35

Primary numerical parameters of the simulated halos at z = 0, A,
B and C referring to the hydrodynamical versions and *-DM to the
corresponding dark matter only simulations. We show the radius
of the sphere whose mean density is equal to 97 (respectively 200)
times the critical density of the universe at redshift 0. The further
columns give the total mass and DM mass inside R97, the gas
mass and stellar mass inside R97/10 . The corresponding numbers
of gaseous cells, star particles, and DM particles are given next. In
all the runs, the spatial resolution reaches 150 parsec at z = 0.
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Halo B: the stellar galaxy maps

Projected stellar luminosities for Halo B at redshift 0 in U-band (blue) and K-band (red).
One grid cell is 5 kpc × 5 kpc. Luminosities (units are solar luminosities) were computed
from SSP integrated magnitudes calculated by the code CDM 2.5 (Marigo et al. (2008)),
using the age and metallicity of the star particles. Visualization is done with glnemo2.
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Galaxies at redshift 0

Upper panel: Face-on and side-on view on the gas density disk of Halo B.

Kennicutt-Schmidt rela-
tion.

Galactic stellar mass rel-
ative to halo mass
evolution.

Rotation curve for
Halo B.
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Density profiles for the three halos over redshift
Hydro Run density profiles.

Gas

Stars

DM

Halo A Halo B Halo C
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DM-only Run: dark matter profile

Halo A Halo B Halo C

Best fitting values for the spherical averaged density profiles fitted
with equation ρ(r , ρs , rs , α, β, γ) = ρs

( r
rs

)γ (1+( r
rs

)α)(β−γ)/α . For the
DM-only simulations, we fixed α = 1. The fit was performed for
r ∈ [250pc,R97].

Run Log10ρs rs α β γ
[/kpc3] [ kpc]

Halo A 8.005 4.39 1.879 2.469 0.126
Halo A-DM 7.232 13.026 1 2.707 0.794
Halo B 7.663 4.425 2.895 2.541 ∼ 0
Halo B-DM 7.639 5.552 1 2.636 0.819
Halo C 7.678 4.317 2.451 2.477 0.268
Halo C-DM 6.992 13.148 1 2.871 0.927
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Adiabatic Contraction
DM profile from DMonly simulation contracted via a model calibrated
(Blumenthal et al. 1986) on cosmological simulations (Gnedin et al. 2004) by
the stellar profile obtained in the hydro run.

150 pc Resolution limit

DMonly run
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Halo A

150 pc Resolution limit

DMonly run
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Halo B
Cusp/core transformation (Pontzen & Governato (2012)
arXiv:1106.0499, Brooks & Zolotov (2014) arXiv:1207.2468, Maccio et
al. (2012), Teyssier et al. (2013) arXiv:1206.4895).
And : Adiabatic contraction at r∼ 5− 10 kpc.
Core formation is not observed for this stellar galactic mass range in
MagiCC simulations (di Cintio et al. 2014 arXiv:1306.0898) and not at
all in simulations performed with AREPO (Marinacci et al. 2014
arXiv:1305.5360).
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Satellites: Halo B

Left panel: Comparison between the luminosity from the
simulation subhalos with the dwarfs in the Milky Way.
Right panel: Masses with respect to their distance to the halo
center of luminous and dark satellites in the simulation.
Removes tension from the missing satellites and the too-big-to-fail
problem (c.f. di Cintio et al. 2011 arXiv:1107.5045).

See also Sawala et al. (2014) arXiv:1406.6362.
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Direct detection

The dark matter results of the simulation = Realistic and
consistent Milky-Way-like framework for astroparticle calculations!

dR
dER

=
ρDM

MDM

dσ
dER

η(ER , t)

Particle and nuclear physics:

dσ
dER

=
MN
2µ2n

σ0n
(f 2p Z + (A− Z )f 2n )2

f 2n
F 2(ER)

Astrophysics:

η =

∫ vescape

vmin
d3~ν

f (~ν)

|~ν − ~νearth|

Features?
Maxwellian?
vmin? vescape?

See Vogelsberger et al. (2009) arXiv:0812.0362, Ling et al. (2010) arXiv:0909.2028,
Pillepich et al. (2014) arXiv:1308.1703, Read (2014) arXiv:1404.1938.
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Local dark matter density

Dark Disk? Related to direct DM detection.
Under investigation...
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Local dark matter velocity distribution

In the galactic reference frame:
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Dark matter radial velocity.
(Gaussian Fit: Green / Generalized

Gaussian Fit: Red)
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(Double gaussian component fit:

Magenta / 1rst Gaussian fit: Red /
2nd Gaussian fit: Green).
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Local Dark matter vel. distribution
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Modulus of dark matter velocity
(Maxwellian Fit: Green /

Generalized Maxwellian Fit: Red)
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Eta term
Eta term: annual modulation for the simulation data and the
Maxwellian fit.
vmin = (0 Green, 100 Red, 200 Blue Tiny Dashed, 300 Blue Large Dashed, 400 Blue
Joined) km/s.
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Eta term modulation seen over a year
for different integration limits for the

simulation data.
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Indirect Detection

dΦγ,ν

dΩ
=

1
4π

1
δ

〈σv〉
m2

DM

∫ Eγ,νmax

Eγ,νmin

∑
i

dN i
γ,ν

dEγ,ν
BRi︸ ︷︷ ︸

HEP

∫
l(~Ω)

ρ2DMdl︸ ︷︷ ︸
Astro

Particle physics
Annihilation cross section
Dark matter mass
Annihilation induced spectra

Astrophysics:DM distribution
Features ?
Cusp ?
Clump features ?
Baryons ? (compression ?)
Feedback ?

See Stoehr et al.(2003) arXiv:astro-ph/0307026, Kuhlen et al.(2008) arXiv:0805.4416,
Springel et al.(2008) arXiv:0809.0894, Athanassoula et al. (2009) arXiv:0801.4673, Nezri
et al.(2012) arXiv:1204.4121.
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Indirect Detection
Dark matter only simulation:
Gamma skymap of annihilating DM.

WIMP: MDM = 100 GeV, bb̄, < σv >= 3 ∗ 10−26 cm3/s
Observer at 8 kpc.
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Indirect Detection
Simulation with hydrodynamics:
Gamma skymap of annihilating DM.

WIMP: MDM = 100 GeV, bb̄, < σv >= 3 ∗ 10−26 cm3/s
Central DM profile is cored (Feedback...)
Detectability depends on background.
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Indirect Detection
Background model for cosmic rays: Use SN feedback, star and gas
distribution to calculate diffuse hadronic gamma emission.
Star distribution → SNII explosion → cosmic rays.
Gas distribution → CR spallation → gamma fluxes.

SN feedback
IMF 20% → massive stars.
Age = 10 Myr (Type SN II).
Energy per explosion : 1051 erg.
20% used as feedback energy.

SN II = Cosmic Ray sources
Select all SN events in the past 500 Myr (typical residence
time of CRs in the Galaxy).
Explosion rate (at redshift 0) ∼ 4 Msun/year.
10% converted into high energy cosmic rays with a power law
energy spectra : E−2.

See Nezri et al. (2012) arXiv:1204.4121.
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Indirect Detection
Background model for cosmic rays
Gamma skymap: In progress...

Disc morphology -> to be compared with Fermi.
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Conclusions
Summary:

Zoom simulations with RAMSES.
One halo/galaxy exhibits a lot of MW observational properties.
Interplay between star formation and SN feedback → Impact on
dark matter profile (we obtained a cored DM profile).
Caveat with star formation history → need for a
different/additional feedback scheme?
Local dark matter: Adiabatic contraction and corotating dark disk.
Analyse of satellites: Halo in lower MW mass range seem to agree
with MW observations.

Perspectives:
Improvement of spiral galaxy simulations: new (more exact)
treatment of gas physics intervening in star formation or
(and?) new feedback schemes?
Consistent framework for astroparticle calculations related to
(direct and indirect) dark matter detection.
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