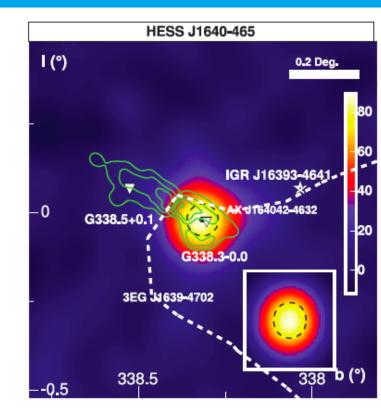
HESS J1640-465

An exceptionally luminous TeV γ-ray SNR

Stefan Ohm (DESY, Zeuthen) Peter Eger (MPIK, Heidelberg) On behalf of the H.E.S.S. collaboration

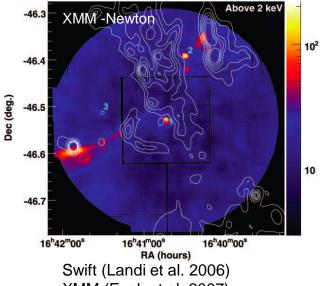
Introduction: HESS J1640-465

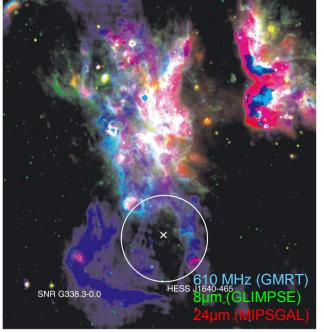

> HESS

- Original discovery in 2006
- 14\u03c6 in 14 hours of observations
- Compact (~2.7'), strong (~10% Crab) γ-ray emitter
- Γ = -2.40 ± 0.15

Environment

- In complex region (HII region, stellar cluster)
- Coincident with incomplete shell-type SNR
- No non-thermal emission reported at time of HESS discovery




X-ray and radio follow-up observations

X-rays (Swift, XMM and Chandra)

- Detection of compact source + extended nebula
- No non-thermal X-ray emission from SNR shell
- Highly absorbed → large distance
- Pulsar wind nebula interpretation of TeV signal

XMM (Funk et al. 2007) Chandra (Lemiere et al. 2009)

Radio (SGPS, GMRT, ATCA)

- Detection of non-thermal shell emission
- No non-thermal emission from PSR or PWN
- Absorption features of SNR throughout line-of-sight
- Distance estimate: 8 13 kpc
- \rightarrow Most luminous Galactic TeV γ -ray source

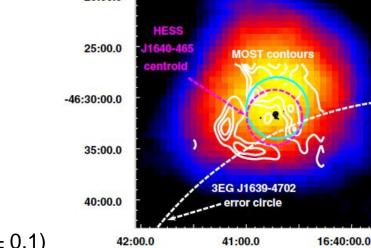
GMRT, ATCA (Castelletti et al. 2011)

Fermi-LAT observations

Detection of luminous GeV source

Coincident with HESS source

Morphology


>

Consistent with point source > Spectrum Spectral points between 200 MeV and 50 GeV • Spectral index compatible with HESS ($\Gamma = -2.3 \pm 0.1$) HESS J1640-465 -10Fermi s^{-1}) HESS log Flux (erg cm⁻² CXC -12 -14GMRT -16-10-55 10 -15log Photon Energy (MeV)

Interpretation and modelling

20:00.0

- GeV + TeV spectrum interpreted as IC emission from PWN
- Smooth connection of Fermi and HESS spectrum requires additional low-energy relativistic Maxwellian component

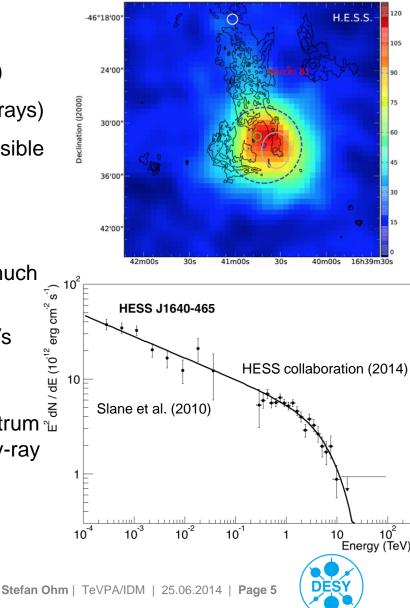
Fermi-LAT (Slane et al. 2010)

1FGL J1640.8-4634

New HESS results

Data set

- Quadrupled data set (>60 hours of observations)
- More sensitive analysis methods (40σ, ~1800 γ-rays)
- \rightarrow detailed spectral and morphological studies possible


> TeV spectrum

- Power-law has low probability p = 1%
- Exponential cut-off power-law (ECPL) fits data much better (fit probability p = 36%)
- At 10 kpc distance, luminosity $L = 7.8 \times 10^{34} \text{ erg/s}$

> GeV – TeV spectrum

 Simultaneous ECPL fit to Fermi and HESS spectrum [™] gives consistent results → no break required in γ-ray spectrum

Data	E_{\min}	E_{\max}	Г	Φ_0 (10 ⁻¹² cm ⁻² s ⁻¹)	E _c (TeV)
HESS HESS + Fermi-LAT	260 GeV 200 MeV		2.11 ± 0.09 2.23 ± 0.01	3.3 ± 0.1 3.7 ± 0.2	$\begin{array}{c} 6.0^{+2.0}_{-1.2} \\ 8.8^{+2.3}_{-1.5} \end{array}$

Discussion: Age and environment of G338.3-0.0

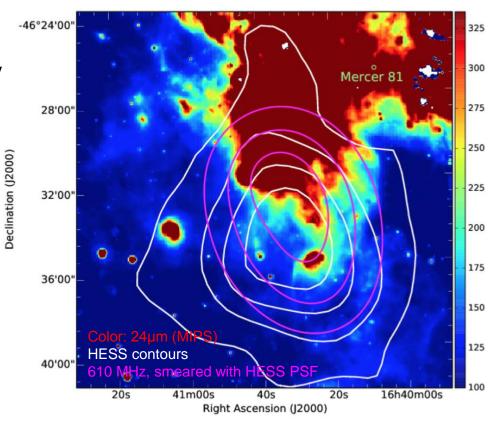
SNR evolution in wind-blown bubble

- Scenario that has also been invoked for RCW 86, Cygnus SNR, or RX J1713-3946
- Bubble size of 10 pc typical for 20 M_{\odot} mass O-type star (Chevalier, 1999)
- Lifetime of 7 Myrs, 2600 km/s, $10^{-7} M_{\odot}$ per year
- Lower age limit for wind material inside the bubble, the shock speed of 5000 10000 km/s of 1 2 kyr (Slane et al. estimate 5 8 kyrs)
- And free expansion until shock hits wall of swept up material
- Density
 - Large density required to explain γ-ray emission as hadronic
 - Thermal radio: Castelletti et al. infer electron densities of 100 150 cm⁻³
 - Thermal X-rays: not seen from the shell, detected in this source, but also not expected given the large distance, high absorption and possible evolution in wind-blown bubble
 - HI: absorption gives upper limit on neutral gas density of ~600 cm⁻³
 - No indication for molecular gas densities (n > 10⁴ cm⁻³)
 - Measurements consistent with gas densities of \geq 150 cm⁻³

Interpretation I: PWN scenario

> PWN scenario

- Existence of point-like X-ray source + extended nebula (but no pulsations detected)
- Positional coincidence of X-ray PWN candidate, GeV source and HESS source
- > But...
 - IC peak is seen for all TeV-emitting PWN, but not for this one
 - Smooth power-law from hundreds of MeV to multi-TeV energies requires $\Gamma_{e} \sim -3.4$
 - HESS spectrum also excludes the proposed low-energy relativistic Maxwellian
 - TeV extension of all TeV emitting PWN is smaller than SNR shell, this one is larger
 - No energy-dependent morphology seen in HESS data
 - Scaled radio limit factor ~5 lower than model predictions
 - → PWN-only interpretation of GeV and TeV emission hard to realise
 - → different origin of Fermi and HESS emission is possible, but requires fine-tuning
- Explore alternative scenario

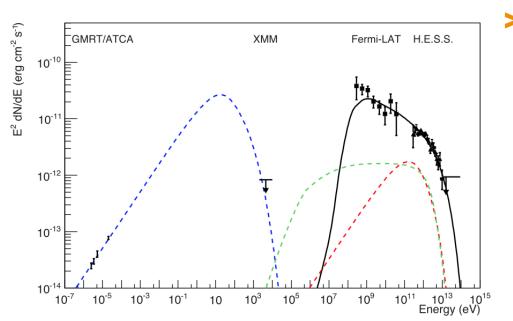

Interpretation II: SNR scenario

Supported by

- Positional coincidence of GeV and TeV source and north-western SNR shell
- Spectral and morphological similarity with other Galactic SNRs interacting with molecular clouds

> Hadronic origin

- Efficient particle acceleration in lowdensity medium inside wind-blown bubble
- Requires large densities (interior of wind-bubble not sufficient)
- Target: a) dense wind shell, or b) dense and clumpy surrounding material
- cf. RX J1713-3946 (Zirakashvili & Aharonian, 2010)
- Higher IR flux from north-western shell consistent with TeV morphology

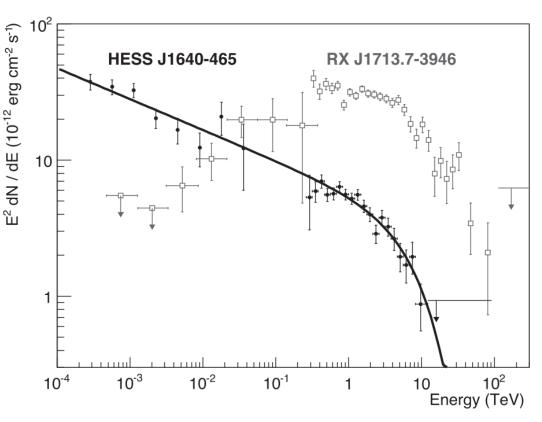


Interpretation II: SNR scenario

Modelling

- X-ray UL on non-thermal shell emission from archival XMM data
- Scale non-thermal radio flux from shell
- Apply time-dependent one-zone model
- Continuous injection of electrons and protons over assumed SNR age of 2.5 kyrs

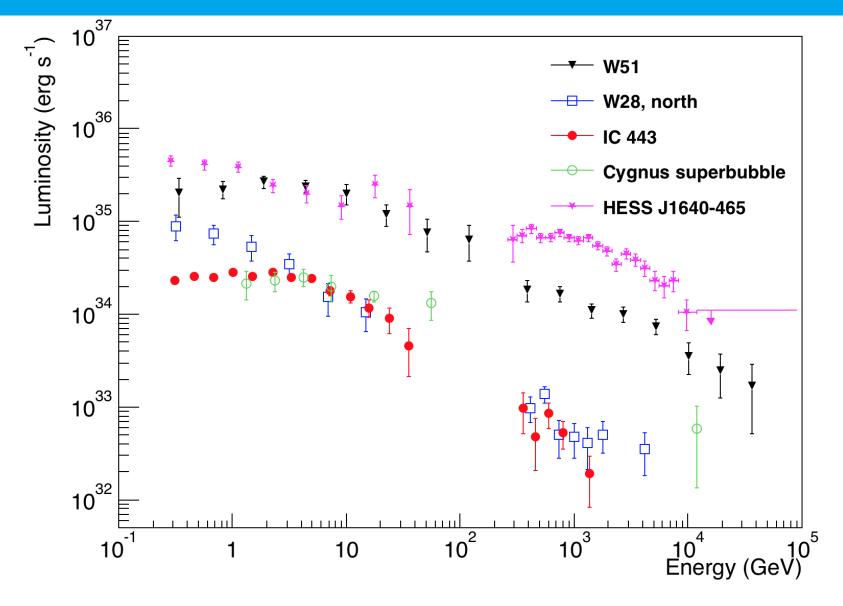
Leptonic scenario


- Magnetic field and electrons spectral index from radio (B = 35μG, Γe = 2.0)
- Cut-off energy from XMM (E_{c,e} = 10 TeV)
- Predicted IC emission much lower than HESS data
- Larger e/p ratios and lower field help with the level of emission, but not with the shape
- Hadronic scenario
 - For n_H = 150 cm⁻³, 4 x 10⁵⁰ erg in protons required to explain γ-ray spectrum
 - → very efficient accelerator, and/or
 - → very energetic SN explosion

Interpretation III: Comparison with RX J1713-3946

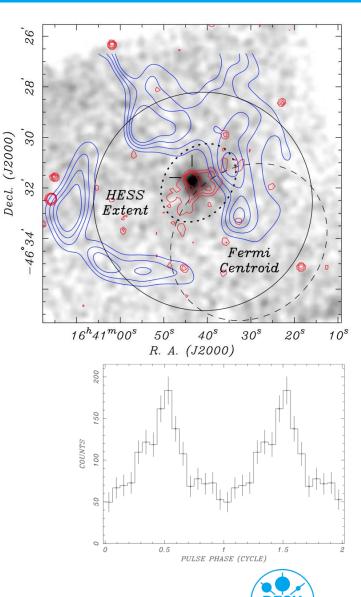
Comparion

- Similar TeV spectra
- Different GeV spectra
- Possible Explanation
 - Diffusion of low-energy CRs into dense clumps in HESS J1640-465
 - 'Shielding' of lower-energy CRs in RX J1713-3946?
 - Different ages?
 - Different diffusion properties?



Summary and Conclusion

- > HESS J1640-465 is the most luminous Galactic TeV source
- > TeV morphology
 - significantly extended
 - overlapping with SNR shell
 - more extended than shell
- GeV TeV spectrum consistent with one featureless power-law over 6 orders of magnitude
- PWNe interpretation challenging, but contribution to TeV spectrum not excluded
- New HESS results + MWL data suggests dominant hadronic emission from SNR shell
 - Morphology and spectrum well reproduced
 - Requires high energy in CRs and high ambient densities


Comparison of HESS J1640 with other SNRs

NuSTAR discovery of PSR in HESS J1640-465

- Sotthelf et al. (2014) reported discovery of pulsation from PSR in HESS J1640-465
 - Ė = 4.4 x 10 erg/s, T_c = 3350 yrs, P = 206 ms
 - With n = 2, >10 GeV spectrum can be described with PWN model for PSR birth period of P₀ = 15ms
- Requires middle-aged PWN, 6% of current Ė to be converted into γ-rays
- Spin-down power and age considerably smaller than in previous models
- Authors argue that the Fermi spectrum below 10 GeV is likely not correct in HESS paper, but without presenting a reanalysis
- Revised preliminary analysis of 5 years of Fermi-LAT data confirms significant emission below 10 GeV (as also presented in 2FGL)

